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STRONGLY ALMOST SUMMABLE DIFFERENCE
SEQUENCES AND STATISTICAL CONVERGENCE

M. AIYUB
ABSTRACT

The idea of di erence sequence space was introduced by Kizmaz [12] and was generalized by Et and
Colak [6]. In this paper, we introduce and examine some properties of three sequence spaces de ned by
using a modulus function and give various properties and inclusion relation on these spaces.

1.INTRODUCTION

Let w be the set of all sequences of real numbers and .., ¢ and ¢y be respectively the
Banach spaces of bounded, convergent and null sequencez £ = (zx) with the usual norm
|lz|| = sup |zk|, where k € ¥ = {1,2,3.....}, the positive integers.

A sequence T € fu 15 said to be almost convergent [14] if all Banach limits of T coincide.
Lorentz [14] defined:

. N - - :
&= {;1: - lim Z::k_m exists, uniformly in m}.

Several authors including Lorentz [14], Duran (2] and King [11], have studied almost
convergent sequences. Maddox [16, 17] has defined = to be strongly almost convergent to
a number L if

lim — th m — L| = 0 uniformly in m.
=1

Ey [ ] we denote the spaces »::nf all strongly almost convergent sequences. It is easy to see
that ¢ C [é] C & C fee.

The space of strongly almost convergent sequences was generalized by Nanda [20, 21].

Let p= (pi) be a sequence of strictly positive numbers. Nanda [20] defined:
- [ 1 = . [
[&.p] = {-T = (&) : im Ekz_l |25 m — L|™ = 0, uniformly in m},

n

.1 . :
lép], = {ﬂ«' = (zx) : lim n kZ |zasm " = 0, uniformly in m},
=1

[&p],. = {:J: = D Eup — Z|Ik m|p" < m}

1"|‘1.|1"I.'i"'t-
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Let A = (Ax) be a nondecreasing sequence of positive numbers tending to oo such that
.}lﬂ_l E .}lﬂ_ 1, .}I.l = 1.
The generalized de la Vallée-poussin mean 1s defined by

(@) = 3= 3 o

kel,
where In = [n— An + Lin] forn=1,2,..

A sequence T = (T i3 said to be (I, A) summable to a number L (see [13]), f tn(z) = L
as n — o0. If Ay = n, then (V, A) summability and strongly (V, A) summability are reduced
to (€', 1) summability and [C, 1] summability, respectively.

The idea of difference sequence spaces was introduced by Kimmaz i [12]. In 1981,
Kizmaz defined the sequence spaces:

Xl[ﬂ.]l:{:rzl[::k]l:ﬂ.rrf}{}

for X = o, c and cg, where Az = (T4 — Tuia)-
Then Et and Colak [6] generalized the above sequence spaces as below:

X(AT) = {;J:=I[:rk]l:.&“;: EK}

for X = fue.c and ¢g, where v € I, A% = (1), Az = (Tp — Tpa), ATz = (A7 o —

ATz ), and so that
.
.ﬂ-f = _1 v T NPT
I g( :| L-'] Thtt

Recently, Et and Basarir [5] extended the above sequence spaces to the sequence spaces
X(Ar) for X = Lae(p). clp), colp), [E 1], [E,;p]ﬂ and [é,p] -

We recall that a modulus f is a function from [0, c0) — [0, c0) such that

() f(z)=01ifand only if £ =0,

(#2) flz+w) < flz)+ fly)foralz >0, y >0,

(1#1) f is increasing,

(1v) f 1s contmuous from right at 0.

It follows that f must be a continuous everywhere on [0,c0). The modulus function
may be bounded or unbounded. Ruckle [23] and Maddox [15] used a modulus function
f to construct some sequence spaces. Subszequently modulus function has been discussed
in [3, 4, 19, 22, 26].

Further, let X,Y C w. Then we shall write ([27]):

MX.Y)= P :1:'14}"={ﬂEw:a..1:ETr’ fc:ra]l::E}{}.
X
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The set X* = M[X,#] is called the Kothe-Toeplitz dual space or a- dual of 3. Let X

be a sequence space, Then X is called:
(?] Solid [or normal) if [aeze] € X, whenever, (zx] € X for all sequences [aw] of

scalars with |ag| < 1 for all k € B
(1] Symmetricif (z¢] € X implies I:J:ﬂ'k;} € X whenever w(k) iz a permutation of 4.

(122) Perfect if X = Xo=,
(ev] Sequence algebra if 2.9 © X, whenever 2,y € X. It iz well known that if X is

perfect then X is normal [10].
The following inequality will be used throughout this paper:

(1.1) |ae + Be|™ < O Jae™ + |bef™],
where ag, by €0, 0 < pp < supypp = H, ¢ = max (1, 2771) | (see [18]).

2. Mam ReEsurTs
In this section we prove some results involving the sequence space [Tr", M p]n[ﬁﬂ‘ B,

[V, 3, £,8], (A7, E) and [I7,}, f,p]_(A",E).
Definition 2.1. Let F be Banach space. We define w(E) o be the vecior space of

all E-valued sequences that iz w{E) = {m = [zg) r2g € E}. Let | be a modulus

function and p = (pg| be any sequence of strictly positive real numbers.

We define the following sequence sets:
[V A fop) (A7 E) =
Fk
: Z [f(lﬂrimm—i'-”] = 0, unifarmly in m for some L = l]},

= {.]:EM[E:I :]1'1:1:1}ﬁ
Ry

Iy
[V, A fop] (A7 E) = {.:: € w(E) :11'31% > [j(|ﬂ"n |m|}] = 0, uniformly inm},
® keln

and
VA fup] _(ATE) = {.i! € w(E) iu"?i > [jﬂﬂ.":k |m|}]ﬂ < m}.

[
Ifxc [‘l:'.}..j,::-]i(ﬂ".E] then we shall write 2, — L[‘l:".}.,j,::-]i[ﬂ".E] and L will
be called A - strongly almost difference limit of = with respect to the modulus f.

Through this paper, £ will denote any one of the notions 0, 1 or co.
In this case f(z) = z and p; = 1 for all & £ M, we shall write ["l:",.h]zl:ﬂ“,E] and

[?,Jn.j]z(ﬂ.“,E] instead af W.J..j.p]z[ﬂ.“.E]. Hzxe W,A]i[ﬂf.E] then we say that
zis AL p strongly almost convergent to L.

Page No. 3
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The proofs of the following two theoremns are obtained by using the known standard
techniques, therefore we give them without proofs (zee for detail |3, 22]).

Theorem 2.1. Let p = (p) be a bounded. Then the spaces W,J&, 1 p]ll:ﬂ*, E) are

near spaces cver the set of complez numbers .
Theorem 2.2. Let p=(py) be a bounded and f be modulus funchon, then
[ﬁl‘ﬁl!f!p]ﬂ':'&flﬂlc [?!‘:"'!_f!p]j':ﬂ"flﬂc [Fll:"-:flp]m':ﬂ'-f:ﬂ]-

Theorem 2.3. Ifr > 1, then the melusion [V, ), fip] (A7 BE) C [V, )\ fip] (A7, B)
1 strict. In gemeral [V, ), fip] (AL E) € [V, fup] (AT E) for alli= 1,2, 3r— 1
and the mclusion 15 séet.

Proaf. Wf give the proof for £ = oo only. It can be proved in similar way for 2 = 0 L
Let z € [V, A, f, p]ml:ﬂ""‘,ﬂ]. Then we have

5up;n E_f(l.-‘."‘;*"".:k_ml) < 00,

R i T
By defimition of f, we have:

2 F (187l ) < 53 7 (18 wneml )+ 5 32 A(18 sremanl ) < o0,

kel
Thus,
|'f,.-" A, f:-l'-"].g.:.':ﬁ‘f_j: E)C rl;'}: A £y F]m':'ﬂ"fl-E] .
Proceeding in thiz way, we hawe:
V4 de £ Pl A1) € VA, o pleol A7, B),

for all ¢ = 1,2, 3..r— L Let A, = n for all n € M. Then the sequence z = (k7), for
example, belongs to r‘:",}k,f, ]:I]ml:.ﬂ.+, E), ut doesn't belong to W,A,_f, p]ml:ﬂ*‘j,ﬂ]
for flz)= =z {i.f.: = (k") then ATz, = (—1)"H and A" fz, = (—1)" ek + *;u] for
all ke H). C
Similarly, asin the previous thecrems for the cazes ['i:',.l, fipla( &7y E) and [‘-"',A,f, Pl ATE)

we have:

Proposition 2.1. Lef f be a sequence of modulus funchons. Then:
Vi fup], (A B C [V A fip] (A7 B).

Theorem 2.4. Let fy and f; be modulus funchions. Then we have:

(9 [Vad fupl 087 B) C [V fiofapl (A7 E),
(i) Vo Frap 047 B) 0 [V fapl (AT B) C [V A fi 4+ faap] (A7, B)

The following results are consequence of Theorem 2.4.
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Proposition 2.2. Let §f be a modulus functions. Then:
[V, p] (A% E)C VLA, f, 8] (AT, B).

Theorem 2.5, The sequence spaces [ﬁ,i,fap]gl:ﬂfsfr']h [T?,L_i"'sﬁ]ll',ﬂ-"sf-']' and
[‘L?’,J.,_f,p]m(ﬂ.“,ﬂ']l are not solid for + > 1.

Prwf Let pi = 1 for all &, f(z ]I— Tz and An = n for all n € T4 Then (zi) = (k") €
[I.f' M T, ;u]m(.&“ E) but (ak:l:k [If' My Foplea(AT,E), when ap = (—1)% forall k € I
Hence [Tf' AT P]ml:.& . E) 1s not sohd. The other cases can be proved by considering
similar examples. O

From the above theorem we may give the following corollary.
Corollary 2.1. The sequence spaces [T?',Jn._i",;v]gl:ﬂ‘lﬂh [Tj',i,faﬁ]liﬂ-‘lﬂl and
[V, A f.p] (AT, E) are not perfect for r > 1.

Theorem 2.6, The sequence spaces ['L:',Jn,f,p]lﬂﬂ“,.ﬁ']l and [V, f.p] (AT E) are
not symmetric forr = 1

Froof. Let (px) = Lforall k, f(z) =z and Ay = nforalln € [N. Then 2 = (k7) €
[V, A f.p] (AT, E). Let (yx) be an arrangement of (z), which is defined by

(Y) = 4 T1,T3: T2 T3 T3s T5: T16s T6s T25» T7s T35 T8 T4gs T10+weev }

Then () £ [V, ), £,p], (A", B). -
Remark 2.1, The space W,.h,_f,p]ﬂﬂ.“,.&']l 5 ot symmetric for r = 2.
Theorem 2.7. The sequence spaces [V, ), f.p] (AT E). are not sequence of algebras.

FProaf. Let ps = lforall k €., flz) ==z an::l).ﬂznfﬂrallnEN. Then = = (k™ 3),
y=(k2) e [V, A f,p] (A7, B), but o,y € [V, A f,p] (47, B). O

3. STATISTICAL CONVERGENT

The notion of statistical convergence was introduced by Fast [7] and studied by various
authors [1, 9, 24, 25]. In this section we define A} p almost statistically convergent

sequences and give some inclusion relations between §(A, F) and [V, A, f,p] (AT E).

Definition 3.1. A sequence T = (zi) 15 said to be A} g-almost statistically conver-
gent to the number L 1if for every e > 0,

hm}.in € In i |ATzrm — L| > €}| = 0 uniformly in m.
noAn
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In this case we write (AL, F) —lmz = L, or 3 — L3[ALLE).

When An = n and L = 0 we shall write §(A", F) instead of (AT, E).

The proof of the following theorem i= easily obtained by using the same technique as
in Theorem 2 in Savag [25], therefore we give it without proof.

Theorem 3.1, Let A= (An) be the same as m section 1, then:
() If @ — L[V, )], (A", B) = zx then L3(A], B);
(i) Ifz e fm(ﬂ.“,Eﬂ and Ty — Li(A%, E), then oy, — L[V, M| (A", B);
(#id) (AL, E) N lo(AT, E) = [V, ], (A", B) N b (AT, E).

Theorem 3.2, §(A", F) C (A%, E) if and only 1f iminf, 2= > 0.

Proof. The sufficency part of this proof can be obtained using the same technique az the
sufficiency part of proof of Theorem 3 in Savag [25].
For mecessity suppose that liminf, 2 = 0. As in ([8), p. 510) we can choose a

subsequence (n(7)) such that %“C'ﬁ— < :1; We define ¢ = (z;) such that:

1if4 € In(i) § = 12,300
.&1‘ ;= . ]
¥ { 0 otherwise.

Then z € [¢](AT,E) and by [4, Theorem 3.1 (i)}, € 3(A", E). Butz ¢ [V, Al (Ar, B)
and Thecrem 3.1 (i) implies that = ¢ §(A%, E). This completes the proof. O
Theorem 3.3, Let f be a modulus function and sup, pr. = H. Then:

[‘['.}:-':"h fhp]l('ﬂfiﬂj C EE'&IE'E]‘
Froof. Let ¢ € [‘L?’,J.,_f,p]l(ﬂ.“,.ﬂ']l and € > 0 be given. Let I; dencte the sum over

k < n such that |ﬂ.":1:k+m - .L| > ¢ and I denote the sum of over & < n such that
|£~.“.'J:k+m — L| < e. Then:

o 2 (08 D] = 5 [0~ D™ 3 [ 5]

kel

> i; #0801 > 5 L1
> S (17 0]
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Hence = € 3(AL, F). m
Theorem 3.4, L-et;r' be a bounded and 0 < h = nfepr < pr < supppr = H < co.
Thfﬂ-' -ﬁ E:E:' - [Vg-:'l:f:?]l(ﬁ‘-fsﬂlh

Proof. Suppose that f iz bounded. Let ¢ > 0 and I, and Z; be dencted in the previous
theorem. Since f iz bounded there exists an integer K such that f{z) < K for all z == 0.
Then:

Py P

& 3 ot = LT[0 £ 115000
= [FF

1 kg H
Ele:max[ﬁ’ A }_.}. a

-

< max (f{h,ﬁff};—ﬂuk €In:|Afem —L| = €}|+
+ max (f(e)", (&)

Hence z € [V, ), f,p], (AT, B). =
Theorem 3,5, Let 0 < h=imfppp < pr <sup,pr = H < co. Then

§(ALE) = [V 01,8, (A7, B),
if and only 1f { 15 bounded.

Proof. Let f is bounded bounded. By Thecrem 3.4 and Theorem 3.5 we have §(A5LE) =
[V, A f,p], (47, B). Conversely, suppose that f is unbounded. Then there exists a posi-
tive sequence (tz) with f(t) = k2, for k = 1,2,3..... If we choose

Afg. — { hi=k% 1=1,23....

0 otherwise. '

then we have:

1 af A—

.}._Hk Eln: |£‘-E_m| > 'EH < i: ! for all T, M

l
ﬂ.ﬂd 20 that T £ EEﬂE:EJ b‘l.].t & E [ﬁ,).,j,p]l(.&“,f:j fﬂr E = . Thlﬂ- C'E'Iltl'ﬂdiﬂt to
E(ﬂ'E:E}: [V,i,_f,p-llliﬂ.g,ﬁ'} O
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ON A PRODUCT SUMMABILITY OF AN ORTHOGONAL
SERIES

XHEVAT Z. KRASNIQI
ABSTRACT

In this paper we have de ned a new product summability, in order to make an advanced study in the
special topic of summability. Namely, we give some su cient conditions, in terms of the coe cients of an
orthogonal series, under which such series is product summable almost everywhere.

1.INTRODUCTION

The absolute summability is a generalization of the concept of the absolute just as the summability is an
extension of the concept of the convergence. There are a lot of notions of absolute summability de ned by
several authors. Particularly, by those authors such notions are employed for studying the absolute
summability of an series. As a recent result can be mentioned those of Y. Okuyama (see section 2) who
has proved two theorems which give su cient conditions in terms of the coe cients of an orthogonal series
under which such series would be absolute generalized Norlund summable almost everywhere.
Moreover, an interested reader could nd some new results, see as examples [4]-[6], where are given some
statements which include all of the results previously proved by Y. Okuyama and T. Tsuchikura [8]-[9],
and also are given some new consequences. In order to make an advance study in this direction, here we

study the question when an orthogonal series is product summable almost everywhere.

2. Notations and Known Results

For two sequences of real or complex numbers {pn | and {gn}, let

ki
Po = m+Pm+pto+pa=) Pu
tl—l:l
1
Qn = @+@+g@t- =) v
v=0

and let the convolution (p# g)n be defined by

n n
Rn = (p#*q)n = E_Ft'qn—t':. and denote R{I = Ej:rt.qﬂ_t..
B=0

=7
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Let 377 a, be a given infinite series with the sequence of its n—th partial sums {s.}.
We write

1 "
ﬁl;‘f." = = Z Pro—vufp.
Rﬂ w—il

If R, # 0 for all n, the generalized Nérlund transform of the sequence {£,.} is the sequence
{27}
The infinite series E;";u a, 15 said to be absolutely summable (N, p, ) if the series

L]

PONAREN
=1

converges, and we write in brief
> an €|N,pal
n—i

The |N, p,q| summability was introduced by Tanala [3].
Let {4,(2]} be an orthonormal system defined in the interval (a,b]. We assume that
f belongs to L?(a,b) and

(2.1) flz] “‘ZEJW_J[J:L

a1

where e, = [* f(z)4,(z)dz, (1 = 0,1,2,...).
Regarding to the orthogonal series (2.1] Y. Okuyama has proved the follawing twa
theorems:

Theorem 2.1 ([8]]. If the series

SRR e

=1 _:|—1

comtverges, then the orthagonal series

ijdpj[.ﬂ]
3=

15 summable |N,p, | almast everyuhere.

Theorem 2.2 ([8]]. Let {l(n)} be a positive sequence such that {Qlin)/n} 15 2 non-
mereasing sequence and the series

L]

1
Z nil(n)

=1
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converges. Let {p,} and {q,} be non-negatyve. If the series

> len*R(n)w(n)
n—1

contverges, then the arthogonal series

D ey (z) €|V, piag|
a—
almost everyuwhere, where win) 1z defined by

o =S (B B

»=l

fwe take p, = 1 for all thcn the sequence-to-sequence transfarmation t57 reduces

to transformation B2 = {? Zq._..s._., while far g, = 1 we abtain the transformation
" oy—n

RE = PLZ""-*""‘ . Das [2] defined the transformation
AT

pﬂ —
=B Z Z Q2%
® y=0
and gave the following definition:

Definition 2.1. The infinite series E;";n a, 18 said o be summable [N, p)(N,q]|.
the sequence {U,} 15 of bonded variation, i.e. the series

[ nc]

Z |Uﬂ - Uﬂ—il

n—1

CONLET]ES.

Later on, W. T. Sulaiman [1] considered the transformation

Ve = —Z ijsj

1.r—l'.'| _;|—l'.'|

of the sequence {s.}, and presented the definition:

Definition 2.2. The mfinide series ., a, is said to be summable |(R,q,)(Rpn )|
k=1, 1f

==

Z ﬁk—ilvﬂ -V _1|J|:

n—1
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conterges, and we write in brief

3 an € (R, ) Rura .

n—i

Let us denote by D, the transformation

of the sequence {2, }.
Now we shall introduce the fallowing definition:

Definition 2.3. The mfinile series E;"lﬂ a, 5 said Lo be summable |(N,pn.gn)
(NrQRrpﬂ]lk: k :_:' 1: :Ij

Z ﬁk—ilﬂﬂ _ 'Dﬂ—ilk
n—1
comverges, and we write shorily E;"lﬂ an € |(N, Prs @ (NG P |-
The main purpase of the present paper is to study the (N, ooy 90 [V, 9y ) | sSumma-
bility of the arthogonal series (2.1) for 1 < & < 2.
Throughout K denstes a positive constant that it may depends only on k, and be
different in different relations.
The following lemma due to Beppo Levi (see, for example [7]] is often used in the
theary of functions. It will need us to prove main results,

Lemma 2.1. If f,(1] € L(E| are non-negative funchions and

(22) 5 f falt)dt < co,
=1 E
then the series

3 fault)
=1

converges almost everyuhere om E fo a function f(1) € L(E). Moreover, the series
(B.2) 18 also convergent o [ in the norm of L{E).

3. Mam REsturTs
We prove Lthe following theorem.
Theorem 3.1. If for 1 < &k <2 the series

3 ety (RERR; B R.‘Eih‘:—i) |L_1_|:]

r—1 =1
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converges, then the orthogonal series

Z Enidnlz)
nr—i

15 summable (N, pn, 0 (N 0ny ) e almost sveryuhere.

Praaf. First we consider the case k © (1,2]. We use the notations

Let

be the partial sums of order 7 of the series [2.1]. Then, for the transform Dy(z] of the
partial sums £, (x], we have

Dufz) = ;ﬂ;p‘“ Zpﬂu-J Zwt
= Riﬂui "Q"thmt mlzpﬁ-ﬂ
S
- ;EZ: ‘t*"t[”]ZpﬂR"
=2 R_Efm{[x].

ADp(z) = Dalz] = Dyalz)

= ZR:‘RL"ctm._[.::] Z -"R“ L eipi(z)

1=l

= Z (RLERERE - R;__Rif_i ) cipi(z).

=1
Using the Halder's inequality and orthogonality to the latter equality, we obtain

[1aDueita < (b—ar-? ( 1Da(2) —ﬂﬂ—i[::]F‘d::);

15,

k

" O ) . 2 2
— I:b_n:li—% Z ('R:.?R"'Sﬂ _ -E:.?_E:_R:;_i) |-L'{|:|‘ )
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Subsequently, the series

T b
(31] an :I.Jlr |..":'|_D [.ﬂ]lkdﬂ'::HZﬂk -1 Z(RE'R::: RinR:lﬂRj? 1) |-L'{|:|]

=1
converges, since the last one does. Now according to the Lemma 2.1 the series [2.1)
is summable [[N,pn, 40 (N Gnfe]|x almost everywhere. Far & = 2 we apply only the

arthogonality, as far as for & = 1 we apply the well-known Schware's inequality. This
completes the proof of the theorem., C

Maow we shall prove the counterpart of Theorem 3.1 (it can be seen also as the coun-
terpart of a theorem of P. L. Ul'vanow [10]). It is a general theorem which involves in it

a new positive sequence with some additional conditions. For this reason first we put:

(3.2) ml-k:l[i'_] — J%Z (R;RER; RER:LR::— ) '

=1

and then the fallowing theorem holds true.

Theorem 3.2, Let 1 <k <2 and {{Q(n]} be a pasitive sequence such that {{(n]/n}

is 4 hon-increasing sequence and the series 3 nn::'nj COMUErGEs.

Let {p.} and {q.} be non-negative. If the series

i lew [P RE 2 (n) WK (n)

r—1

converges, then the arthogonal series

Z -L'ni,ﬂﬂ[-f-] e |[Nr15'ﬂr gn ][quﬂ FP‘“] |-"=

=il

almast everyuwhere, where REi(n) is defined by (5.2).
Proaf. Applying Holder's inequality to the inequality (3.1) we get that

L]

b
3 nkt f |AD, (2] dz

r—1

{HZﬂ." -1 Z(R‘L"&‘ R“Rit; 1) |-L'<;|n]

. :
=HZ;[Eﬂﬂtnnf e fZ(Rﬁ R;Rﬁ_i) 'f"':]
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- e :
1

Eﬂ(gnntn]) 2 (r2(m) ™ 0™ EZ(R;R‘? R;Rﬁ? 1) lc{ln]
::H{im Ztnnnnf ot f(R’“R* Rl ) }

2 R

L

= (o CAR W

EK{E'E‘P( E]) an(ﬂa&: P:zﬂﬁi)}

k

o -
<K {Zlnl“ﬂf‘imm‘“iﬂ} :
=1

which is finite by assumption. Daing the same reasoning as in the proof of Theorem 3.1
we easy arrive to finish the proaf. C

It is obwious that the transformation D, can never be the same a5 on%, therefore
Theorems 3.1-3.2 bring new results. Moreover, transformation D, can not reduces to
the transformations I, or V., ie. it would be of particular interest to answer ques
tions: Under what conditisns an orthogonal series of the form (2.1) is (N,p)(N,q) or
(Rygn )[R, pn e summable? Regarding to these questions, in the following, we shall give
four theorems without their proofs.

Denote

T T

ﬁ;—-!} = pﬂ_“, u:-!’ = Z -l;|_<_.- and ﬁ: l[:"ﬂ";!J =0

Theorem 3.3. If the series

S AN b
Z Z({;ﬂ _{?.Lnj—:l:_i—i) |c{|ﬂ]

contverges, then the orthogonal series

3 enpnlz)
n—il

18 summable |(N,p](N,q]| almast sveryuhere.

Theorem 3.4. Let {Qi(n]} be a posibive sequence such that {Q(n]/n} 5 a non-
increasing sequence and the series ¥ - —_— ﬁ COnverges.

Let {pn} and {gn} be non-negative. If the series

S fen ()95 (n)
n—1

contverges, then the orthogonal series
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Z {'Eﬂ,ﬂn[-ﬂ] = |[th] [N.G'H

ra—1il
almost everyuhere, where WFA (n) s defined by

R . : O
. 1o o[ QL 57 —1Pm
e = = % ot Em .
[i] {3 Zn ( Pr.- Pr.-—'.l

=1

Theorem 3.5, If for 1 <k <2 the series

k
y 3 =

= [ ago(mE PG
B2

=1 1i—1

contverges, then the orthogonal series

(==

s summable (R, 9, (R, pr) & a!mcr?eueryﬂ.’iem.
Theorem 3.6, Lei 1 <k <2 and {Qi(n]} be a passtive sequence such that {(n)/n}

if 4 non-inereasing sequence and the series 7 E—rﬁ-ﬁ—:l sONYErges.

Let {p.} and {g,} be non-negative. If the series
2 lenPRET? (n) BT ()
=1

comverges, then the arthogonal series
D cnonlz) € |(Rygn) (Rypn)ls
=i

almast everyuhere, where RFGE(n) {5 defined by

. = iSip  pi 42
RS = 3 nd (P ACL “-1‘:’ﬁ-1) |
B =i

{?n {;Ilre—'l
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DETERMINATION OF JUMPS OF A FUNCTION OF VP
CLASS BY ITS INTEGRATED FOURIER-JACOBI SERIES

SAMRA PIRI,

ABSTRACT

Theproblemofdetermination of jump discontinuities in piecewise smooth functions from their spectral
data is relevant in signal processing. We obtain new identity which determines the jumps of a periodic
function of  Vp,1 < p < 2, class with a nite number of discontinuities, by means of the tails of its
integrated Fourier Jacobiseries. Next, we establish (c,e), a > 1 - ; summability of the sequence

(n2an(w; f) [ Py(w; z)dz), where an(w; f) / Pn (w;x)dx is the n-th term of the tegrated Fourier-Jacobi series of a
functionf. -

1.INTRODUCTION

The problem of locating the discontinuities of a function by means of its truncated Fourier series, arises
naturally from an attempt to overcome the Gibbs phenomenon, poor approximative properties of the
Fourier partial sums of a discontinuous function (i.e. the nite sum approximation of the discontinuous

function overshoots the function itself, at a discontinuity by about 18 percent).

If a function f is integrable on [—m, 7], then it has a Fourier series with respect to the
trigonometric system {1, cos nz, sinnz}3% ,, and we denote the n-th partial sum of the
Fourier series of f by Sx(z, f), Le.,

Snlz, f) = aogf) + Z(ak(f)cos kz + be(f)sin kz),
k=1

17 17 : .
where ax(f) = - [ f(t)cosktdt and bi(f) = - [ f(t)sin ktdt are the k—th Fourier

coefficients of the function f.
The identity determining the jumps of a function of bounded variation by means of
its differentiated Fourier partial sums has been known for a long time. Let f(z) be a

function of bounded variation with period 27, and S,(z, f) be the partial sum of order
n of its Fourier series. By the classical theorem of Fejer [16] the identity:

(1.1) tim 520 140 0)— fa—0y),

n—C0 n
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holds at any point z. To characterize continuous periodic functions of BV in terms of
their Fourier coefficients, Wiener [15] has introduced a concept of higher variation.
A function f is said to be of bounded p-variation, p = 1, on the segment [a,b] and to
belong to the class Vp[a,b] if
a

V2 ,(f) = sup { 3 [#(@:) — fma)P} < oo,
Iag ;

T

where Il p = {a = 3¢ < @ < .. < Tn = b} is an arbitrary partition of the segment [a, ].
A plf) is the p-variation of f on [a.b].

B.I. Golubov [8] has shown that identity (1.1) is valid for classes V.

Theorem (A). Let f(z) € Vo, (1 < p < o0) and v € [y, Then for any pomt T one
has the equation

(2r+1] 3
(12) T}ﬂ Sw nwET:f:' _ {25‘_1}1)1-(1-(;_ l:l:I . f(.:: B EI:I:I

Problems of everywhere convergence of Fourier series for every change of variable have
led D. Waterman [14] to ancther type of generalization.

. " 1 ..
Let A = {An} be a nondecreasing sequence of positive numbers such that Z 5 diverges
ki

and {J.} be a sequence of non overlapping segments I = [an.bn] C [a.}]. A function f
5 M . . ) h _
is said to be of A-bounded variation on I = [a,b] (f € ABV) le | ﬂj}. flan)| < oo

for every choice of {Jn}. The supremum of these sums is called the A-variation of fon
I. In the case A= {n}, one speaks of harmonic bounded variation (HEBV).

The class HBV contains all Wiener classes. Avdispahic has shown in [3] that HBV is
the limiting case for validity of the identity (1.1):

Theorem (B). The sguation (1.1) holds for any function f € HEV at any pomnt z.

The third mteresting generalization of the Jordan variation was given by Z. A. Chan-
turiya [5]. The modulus of variation of a bounded 27 periodic function f is the function
vy with domain the positive integers, given by

i
viln) = aupz | (b)) — flax)|,
Me 12
where [T, = {[ax.b); k = 1,...,n} is an arbitrary partition of [0, 27| into n non overlap-
ping segments.
By a theorem of Avdispahic [1], there exist the following inclusion relations between
Wiener's, Waterman's and Chanturiva’s classes:
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Theorem [C].
{n"}BV CVa_ CV[p®]C {n"} BV,
forQ <a <8< 1.

Clearly, Fejer's identity (1.1] is a statement about Cesars summability of the sequence
{kb cos kx — ka, sinkz}, ap = ag(f) and b, = b(f) being the k-th cosine and sine
coefficient, respectively. Looking at Fejer's theorem in this way, several mathematicians
have extended it to more general summability methads. We note two results [2] which
represent the extension to (O &) summability, & = 0:

Theorem (D). If f ¢ V,, p > 1 the sequence {kby cos kx — kag sinkx} 15 (O, o) sum-
mable 1o :—TU[.::+IJ] — flz —0]) for any & > 1— % and every z.

Corollary (E). If f ¢ V[n?] ({n?}BV) for some 0 < § < 1, then the sequence
{kby coskr — kag sinkz} 15 summable fo ;[j[: + 0] = flz—10]) by any Cesars
method of order o > 8.

Thearem (D] and Carollary (E], are in some sense the most natural generalization of
Fejer's theorem. Indicating the relationship between the order of Cesara summability of
the sequence {kby( f) coskr —kay(f)] sinkz} and the "order of variation"” of a function f,
they complete the earlier picture whose elements were:

1] (&) summability for & > 0 and the class BY;

2] (€ a) summability for & > 1 and whole class of regulated functions (ie. functions
possessing the one-sided limits at each point];

3) (C,1) summability for the class BV,

Similar identities hald if we consider the integrated rather than the differentiated
Fourier series [0]. By R, (=2, /] we denote the n-th order tails of the Fourier series of the
funection f, i.e.,,

Bulz, f1= Z[m [ fleoskz + bel f)sinkz],
k—n
for n c K.
Far any function f, integrable on [—m, ], F=r)p £ My, is defined as follows

e [ e,

where (00 = f and the constants of integration are siccessively determined by the
condition

f FEmde = 0.
Theorem (F]. Let r ¢ Iy and suppase the function f €V, 1< p <2, has a finite

number of discontinuities. Then:
1. the ideniily
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lim w2t RE2 1 (f ) = (—1)7 1

e @r + g S @+~ A2

15 valid for each fizred z € [—m, 7);
2. there is no way to determine the jump at the ;:r;r:'n! 2 £ [—m,m af an arbirmry
funetion f Vo, p = 1, by means of the sequence [E,_:"_j:'[j;.]],n e M.

Such results find their application in recovering edges in piecewise smooth functions
with finitely many ump discontinuities [6].
We say that a function w is a generalized Jacobi weight and write w ¢ GJ, if
w(t] = Rt (1= t)* (1 1P|t — 2q| 5|t — 2|,
ke €[-1,1], kit] > 0 (¢] = 1), wik;t;[-1,1])¢7 € L[0,1],
—l xS 1, 8,8, 8 = —1,
By alw] = (Pylw; 2] |1~y we denote the system of algebraic polynomials

Pylw; 2] = y(w]z® 4 lower degree terms with positive leading coefficients 4. (w], which
are orthonormal on [—1,1] with respect to the weight w ¢ GJ | 1.,

fi P (i )P (w3 £ ()t = By,
-1

Such polynomials are called the generalized Jacobi polynomials. If fw € L[-1,1], and
w i (7.J, then the n th partial sum of the Fourier series of f with respect to the system
alw] is given by

r—1 1
Splw; fiz) = Z ag(w; f1P(w;z) = f S By (w2 fwit)dt,
k=0 -1

1

where ai(w; f] = f St Pelw; f)wit)d! is the & th Fourier coefficient of the function f,
-1

and

n—1

Kulwyz: ) = Z Blwz)Blwt],

k=il

is the Dirichlet kernel of the system o{w].

For a given weight w ¢ GJ it iz assumed that z3 = —1 and 2, |1 = 1. In additian,

Alvye] = [z + £;2041 — £],

for afized & € (0, ==%—=), v=1,2,.., M.
For functions of A—bounded wariation G. Kvernadze [10] has proved the following
thesrem:

Theorem [G]. Lei v € Mo, w € GJ, and suppase ABV 15 the clazs of funclions of
A-bounded variation deiermmed by the sequence A = (AL)7%,. Then the ideniity
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. e el _qred :I—-I"—é
Jm el s e 0 - s -

18 valid for every f € ABV and sach fized 2 ¢ [—1,1), 2 # 21, . 20, ifABV C HEV
If in addition, the weight w © GJ satisfies the following conditions:

(1.3]

(14) az—2, Bz, 6 20,00 20, w(kitlInt € Ljo,1],

L
2

then condition ABV C HBV iz necessary for the validity of identity (1.5) for every
f € ABVY and each fized 2 € (—1,1), 2 # 2q,.., 25 85 well

In [11], [12] is shown that the jump of a finection [ belonging to the Wiener class
Vg, p > 1, can be determined through (C,a), & > 1 - %, summahbility of the sequence

of terms of it's differentiated Fourier-Jacobi series. Consesequently, the comesponding
(€, &) summability result holds for the Waterman classes {n"} BV and the Chanturiya
classes V[nflifa > 8,0« 8 < 1.

2. Mam ReEstLTSs

Theorem 2.1. Let r ¢ My and suppose the funection f €V, 1< p < 2, has a finite
number of disconfinuities and fw ¢ L[—1,1|,w ¢ GJ. Then the identiiy

lim RCV(w; f12) = —(1- 2 E (f(24) - ] (=)

T2hD

15 vald for each fized 2 ¢ [—1,1], where R:;_”[w;j;.r] 18 the n-th order fails of the
integrated Fourier-Jacobi series of the fimclion [,

Proof. By 55 ¥ 8. 2) we dencte the n-th partial sum of the Fourier-Tehebychef
geries of function [ [4]. We use the uniform equicanvergence of Fourier-Tehebycheff series
and Fourier series with respect to the system of generalized Jacobi poelynomials for an
arbitrary function f ¢ HBV and afizred £ € (0, =4~™), v=10,1,2,..,M

(2.1) 18a(w; f12) = 8572 (£ 5]l eragsgy = o(1),

proved by Kvernadee [10, p.185].
From the equiconvergence formmula (2.1] and from the identities:

Sa(w;fiz) = f(z) — Ra(w; f; 2],
SUE e = f2) - RYPE (fia),

we ablain
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(22) |1 Ra 0 £:2) — RS 373 (1) lopagen = o(1).
From an obvious identity [13]
8 EH (fr2) = 5u(0.8),
where r = cosd, g(d) = f{cosd) one has

RCEH(112) = Rala,8).
Integrating the last identity with respect to = we obtain

(23] [RU P H(fa0 = (1 — 22 ERC Y (g:0) + f R g:8) cosddd .

Multiplying by n the identity (2.3], we get
(2.4)

lim n[R Sz = —(1-2%)} tim n B () 4 lm nfm';iﬁ[g;e]mﬂda.
Since
n [ R (g:B)eosedt] < [ nlRE g1,
it is enough to estimate the term n|R:-1_13|:g;E]|.
HEE) = ﬂ-ﬂi, B (0,2m), is the 27 periadic sawlooth function, then the function g
can be represented as follaws [9]:

-1

(25) 0:(8) = 9(8) = = 3 [almG(8 — Brn),
=il

where 8 and [g]m, m = 0,1,..M — 1, are the locations of discontinuities and the
associated jumps of the fhmetion g, and g. is the 27— periadic contimons function,
which is piecewise smooth on [—m,7].

Obwiously,
(2.6] 0NV,

Continuity of g follows from (2.5). Besides, since & € V' C 15 and 1V} is a linear vector
space, g. i Vy as well.

It is known that if g. € V5, 1 £ p < 2, then the function g is continous if and only if
its Fourier coefficients satisfy the following condition [7):

(2.7) i (@7 + b £)7) =n(%) :
k—nr

Thus, according to (2.6], (2.7] and Cauchy-Schwartz inequality we have:
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AR (gesd)] < n - 120 el
k—n

- b /oo i
< vIn (Z[ﬂk[ﬂe]:+h[§a]:) (Zk_lﬂ)
k—n k=n

(2.8] :nn[in_ﬂ D[:n_ijlzn[l].

unifarmly with respect ta 8 € [—m,7].
Az, by means of a change of variables the problem can always be reduced to the case
8 = 0, according to [0, p.33] we have

(2.9) nRCYV (@ (8,,),0) = a(1) .
By use of (2.8) and (2.9) it follows
(2.10) lLim n|RCY(g:0) = 0.
Using (2.3] and (2.10] we get
(2.11) lim nfRE 57 (2] = —(1-2%)F lim nREY(g;0).

Further, using Theorem (F) for v = 0 we have

(2.12) lim n[RE #7220 = —(1 -2} ;‘ (g(8+) — gi8-)) .
Hence, taking into account that f{z4) = g(8F], 8 € [0, m] in the identity (2.12), we
get:
(2.13) lim n[Ry P (200 = —(1-2?) %U[H] — fiz-)].
Finally, result follows from the equiconvergence formula (2.2]. C

Theorem 2.2, Let f be a funclion of bownded p-variation, 1e. f €V, 1<p <2,
which has a finite number of discontinuities such that fw ¢ L[-1,1,w € G

Then the sequence {n“nﬂ[w;j]fPﬂ[w;m]dr} i (Cal, a > 1-— ! summable ia
15

B=20 f(o+ 0) — Sz —0)) for every = € [1,1], where {an(wsf) [ Pu(wiz)dz)

15 the n-th term of the iniegrated Fourier-Tacobi series of f.
Proaf. By ab ¥ 1P E H 5) we denote the n -th term of the Fourier Tehebyeheff
geries of f [4]. Fram the equiconvergence formula (2.1) and identities

Splwifiz) = Spqlw;fiz] + anlw; f1P:(w; 2],

SCE T fim) = 8UE F ey 4 o B R )R B R,
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by the triangle inequality we get:

(214]  [lan(w: f)Palwiz) —a& )P @)l opasy = o1) -
Aceording to the identity (2.11] we have:

lim (n o+ IR (f2) ) = ~(1 =272 lim (v U RST(:4).

Subtracting the last identity from the identity (2.11], we get

i g—

(2.15] lim na ¥ *j[j]fPﬂ_é‘_%j[.r]drz —(1—2")% lim (a,sinnz — b, coanz)

lim (RS ¥H (200 g (1 - 1RO (020

The second sumand on the right side of the equation [2.16] tends to zers according to
(2.11). How, multiplaing by n the identity

— i — &

(2.16) n]j:;gnmi‘%"%’u]fpi "V a)dr = ~(1-2%)} lim (ansinnz — b, cosnz] ,

we have:
(2.17)
lim nﬁatﬁ_*‘_ﬂ[j]fﬁé_ﬁ’_*j[.ﬂ]dz= (1—2)% lim (nb, cosnz — na,sinnz).

Finaly, the result follows from the Theorem (D) and the equiconvergence formula (2.14)
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ODD-DIMENSIONAL RIEMANNIAN SPACES WITH
ALMOST CONTACT AND ALMOST PARACONTACT
STRUCTURES

MARTA TEOFILOVA AND GEORGI ZLATANOV

ABSTRACT

Riemannian spaces admitting almost contact and almost paracontact structures are studied from the
point of view of compositions in spaces with a symmetric a ne connection. Linear connections with torsion
preserving by di erentiation the almost (para-)contact structure or the metric tensor are considered.

1.INTRODUCTION

Riemannian spaces with almost contact and almost paracontact structures have been studied by various
authors, e.g. [1, 3, 4, 5, 8, 9, 10]. The almost contact structure is an odd-dimensional extension of the
complex structure, and the almost structure can be considered as an extension of the almost product
structure. By the help of n independent vector elds in [13, 11, 12, 2] an apparatus for studying of spaces
endowed with a symmetric a ne connection is constructed. In this work we apply this apparatus to study
odd-dimensional Riemannian spaces V2n+1 admitting almost contact and almost paracontact
structures. We prove that if these structures are parallel to the Levi-Civita connection of the Riemannian
metric the space V2n+1 is a topological product of three di erentiable manifolds Xn Xn X1. We also
determine the projecting a nors of the structures and by their help obtain some characteristics of the

considered space.

In the last section, we study linear connections with respect to which the structures of the space are
parallel. We de ne a connection with torsion which preserves the metric tensor by covariant di erentiation

and compute the components of its curvature tensor.

2. Preliminaries

Let Von+q be a Riemannian space with metric tensor g. ,3(11) and Levi-Civita connection
W with Cristoffel symbols ', ;. Then, it is known that V.g.s = 0.
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We introduce the following notations

a oy é o r=12..2n 41,
(2.1) ab,ede=1,2..2n,
Lk dpes=12,.,n; ErEhLﬁr HE=n+lnd 2,20
Let v® (@ =1,2,..,2n + 1] be independent vector fields satisfying the following con-
ditions:
gnﬁ{?ai?'ﬂz 1, gﬂ,ﬁfﬂg-ﬂz 0, fapt™ w #=q,
T k a 2n
(2.2]
o= = g —
Jag¥ v = cosw Japt™y

1] ':ﬂs_
ks k
The net defined by the vector fields o will be denoted by {-u} The reciprocal covec-
tars i.rﬁafthc?ect-:rrs v are defined by

[}

(2.3] v, =8 o o g{, = &7

where &5 is the identity afinar,
If we choose the net {-u} to be the coordinate net, we have

(2.4 gﬂ‘* I:ﬁ,:,l1 .ﬂ.ﬂ.....u} .-:z;*‘-" [u. w__;ﬂ.u.....u] e, Y iﬁ (ﬂ.ﬂ““.ﬂ. m} :
i

1 a
i’,ﬂ(*fﬂﬂ hﬂrﬂr mrﬂ} s Vg (ﬂr Jgﬂi‘lh ﬂrmhﬂ} peeny Woog (ﬂbﬂb """I":II' v T an I:I.} .
According to (2.2] and (2.4], in the parameters of the coordinate net «[-ar} the matrix
of the metric tensar has the form

Tk Q 0
(2.5] lgagll =] QO s 0
0 0 gyl 21

From (2.4] and (25) it follows that gap, v = = "y 4. Also, the following equalities

are valid [13]:
(2.6) Vot? =To tf, Vaba= —Tabp,

After eontracting with v both sides of the first equality in (2.6) and taking ints
account (2.3], we abtain

where 7, v# =8, v® + P85, v and T, ta= &, U5 — T, 1.

(2.7) T, =8, vf i+ T%

i
a [y

, T
Ej 'i‘.i'ﬁ.
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According to (2.4)], in the parameters of the coordinate net JL'HJL equalities [2.7) take
the farm

(2.8]

Now, let us consider the follawing affinor [11, 12, 2]
PELTE!

ia
(2.9] a? = E'ﬁ o= ¥ 7 U 4

From (2.3 and (2.9] we oblain af ag = é,. Hence, the affinor af defines a composition
...-"i.'.;:|11 x ...-"i.'j_ of the basic manifalds ...J'i.'.;:|ﬂ and ...-l'i'.i..
The positions [tangent planes] of the basic manifolds X2, and Xy are denoted by
P Xa,) and P{X4), respectively [7].
According to [11, 12], the affinors
il

a a a
af = 188 4+ aff) = -za"-*-zrm af = 188 - of) = -arli-"-* v o4

are the projecting affinors of t]:u.t mmpamtmn J-'-;":ﬂ w X1, If »° is an arbﬂrarjr ';rc-:*t.-:rr,
havt-aa":iftr“+nﬂtr“ ‘l--"-"+‘l--"-"-’r whmv-ﬁ_nftr“EP[Xgﬂ]andFﬁ ol =
P(X4). GH?‘iﬂLElj’,E £ P Xae), andnﬂ-uli £ P(X5).

Let X, = X, (a+ b= n] be an arbitrary compasition in the Riemannian space 1, and
P(X,) and P(X,) be the positions of the differentiable manifalds X, and X, respectively.
Aceording to [7], the composition X = X, iz of the type (2, ¢], L.e. [Cartesian, Cartesian],
if the positions P(X,) and P[X,) are translated parallelly along any line in the space 1.

3. ALMOST CONTACT AND ALMOST PARACONTACT STRUCTURES ON Vi, 11

Let us consider the fallowing affinars
[3.1] 'E‘E:}-(i"ﬂ g?.:lu _?ﬁgn)r

A k
where X = 1,1 (1 is the imaginary unit, i.e. 1* = —1). According to (2.3) and (3.1) we
ha';rcb'ﬁ -zrl:lﬁ"=l:lan.'lrl»::l“.-'ﬂMl:l"_or 0.
Lct.l_l From (2.3) and (3.1] we obtain
ant1

bﬂﬁzéi— v 7w 4,

1% a1

L&, thea.ﬂinarbfdeﬁnﬁ an almost paracontact structure on Vh, 4.

1
In the parameters of the coordinate net, it is easy to prove that
nil dnil

(3.2) 9er bo b =gap— ¥ a2 ¥ s
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i.e. the almost paracontact structure -E-'f is compatible with the Riemannian metric g. g,

1
and hence W, 4 is an almeost paracontact Riemannian manifold [1, 8).
Inthe cage A = ¢ the affinor (3.1) defines an almost contact structure in Vap (1 which
is not compatible with the Riemannian metric gag, 1.2, (3.2) does not hold for bﬂ

Theorem 3.1. The aj‘inarif 18 pamallel to the Levi-Cwita connection WV, 1.e. V. if =

0, iff the coefficients of the derivative equations (2.8) satisfy
an 1

[:-3--3] Tﬂ':?ﬂ':ﬂp ::IET:I.J: T;.:r:ﬂn
Proaf. Let
(3.4) V. ibf] =0.

According to (2.6] and (3.1], equality (3.4] takes the form

k " ¥ T Ek "
(3.5) Ty t# Yo —To 0P Ha—To v/ 4o+ To v a= 0.
Er k FH > k
After contracting (3.5) with »*, v® and 2l 1“ , we obtain the following equalities which

are equivalent to (3.5):
(3.6)

From the independency of the vectors v# it follows that equalities [3.6) are equivalent to
conditions (3.3) which proves the statement. C

Let uz note that manifalds satisfying (3.4) are contact and paracontact analagues to
Kihler manifalds,

Corollary 3.1. If ¥, EE = 0, in the parameters of the net {-zr}: the Christoffel
symbols T'gﬁ satisfy

(3.7) rk,=0, Ti=0, T2,,,=0, Tihl=q

Proaf. According to (2.8], equalities (3.3) take the form (3.7]. C
Corollary 3.2, If ¥V, i‘f =0, the compasition Xy, » Xy defined by the affinor (2.09),
s af the type (e,e).

Proof. Having in mind (3.4), equalities (3.7] hold.
Then, according to [7], from T'%,  , = Tan ! = (it follows that the composition Xan = X3
i5 of the type (¢, 2]. O
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From (2.5] it follows that the composition X,, = X, is orthogonal, The coordinate
net {-ar} gives rise Lo coordinates which are adapted to the compasition Xy, = X5, In
accordance to [G], the line element of the space Van (1 is of the form

['3"5] d't: = gﬂb[ﬁ-]d'ﬁda + Joan 1 21 [:J.E'F-'E 1]d€ﬂif! 1]:';
where g, 15 the metric tensor of the manifald X,,..

Theorem 3.2, If condition (3.4) holds, the Riemannian space Xy, 15 2 space of the
compasition X, » X, with line element defined m the pammeters of the net {-ar} by

(3.9) ds? = ge. (d)dbddh + gg, (1) dhad.

Proof. The tensors &, V. b and gay are the full projections of the tensors iﬁ T EE

and g.g, respectively, over the pasitions P( X, ).
From (3.1] it fallows that Eﬂ i‘j = 447, Hence, the affinor iﬂ defines a composition

X, = X, in the manifald X,,. Becaunse of the condition 7. i;’ = 0, the compasition

X, = X, is of the type (e,€] [7]. From (2.5) it follows that the composition X, = X is
orthogonal. Then, according to [§], the line element of X x X, is of the form (3.9]. O

Let P(X,.) and P(X,) are the positions of the differentiable manifolds X, and X,
respectively. The projecting affinors of the composition X, = X, are:

1 a i
@:Afa, B = b,
k

For an arbitrary vector w® ¢ P(X,,.) we have w? = EE we 4 E‘E we = ﬁ-"-"—* + I-:'E-’-", where
WP = 5F we ¢ P(X,), and WP = 8 we ¢ P(X,). Obiously, v# € P(X,), and
v € P(X,).

The following statements are immediate consequences of sur results:

Proposition 3.1. [f condilion (5.4) holds, the Riemannian space Vi, 1 15 2 lapo-
lagical product of three basie differentialle manifolds X, X, and X;, 1.e. Vi, 1 15
a space of the composition X, = X, = X1.m

Proposition 3.2. If {8.4) halds, @ the paramelers of the coordinaie nei «[-ar} the

line element af the space Vi, 1 15 of the form

k .5 1. .k . F el nli
(3.10) ds? = g, () d0aE + g (L) AU + garja angal 8 )AL H )2 m

Neaw we will prove the following thearem.
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Theorem 3.3, Condition (5.4) 15 equivalent io the following:

E 1

1 1 e e |
(3.11) B V. =0 EvV.¥=0 @ av.d=q

12
where 17, b7 and gf: are the prajecting affinors of the composition X, =« X, = X4.

¥

1 o2 E nil
Proaf. B&ameafbﬂ:l-ir”ﬂ,f,bizly"-ar,randnfizn-ar" ¥ g, we oblain
k

ril
B Ta b= 4y b Ta (v ),
(3.12) v =1 v b Va (2 ),

3 3 St ' andl
a7 T, af = -Lri” ) J,?n( v By ,).

According to (2.6) and (3.12), we get

1 1 H an i1 &
b Vath=1 (Tﬂ f:fﬁ-l_ ?: = i‘lnﬂliﬁ) Hurs
b | b | s Indd T
[3-1'3] ﬁ vn IE‘:E: =+ (Tﬂ 'U'ﬂ‘l' T & v 'ﬂ) #‘jrp
5 i w4l
g-;'.-?ngf= %ni"ﬂjﬂﬂliﬂ
Il a

From (3.13) it follows that conditions [3.11) hold iff conditions (3.3) hold, too. And,
according to Theorem 3.1, (3.3] are equivalent to condition (3.4). Then, (3.4] and (3.11)
are also equivalent which completes the proof. C

In accordance to (3.7], for the components of the curvature tensor R, 5" = 8,T%, —
8alhq + Tl 5r — Tgslar we obtain
(3.14) Ryl =Ry =R} =R ' =RE"=R2"=0

ks akE kS

4, TRANSPORMATIONS OF LINEAR CONNECTIONS

4.1. Linear connections with torsion. Let us consider the linear commection
(4.1] s =Ths+ Sia,

where 57 is the deformation tensor. The covariant derivative and the curvature tensor
with respect to 1T are denoted by 17 and 1 R,

Advances In Mathematics Scientific Journal ( Volume - 14, Issue - 3, Sep - Dec 2025) Page No. 33



Theorem 4.1. The affinors (5.1) are parallel to 7 and 17 1ff in parmameters of the
1 &f {-ar} the tensor S‘ﬁ satisfies

(4.2] 5= S =S =S =801 =0
Praaf. Let conditions (3.4) hald and let
(4.3) W, =0

According to (4.1], we have 17, EE =V, EE + 85, B - 52, f" from where it follows
that equalities (3.4] and (4.3) hold iff

(4.4) PE = 8F b —5¥ M =q.

o ﬁ oo Jl'

We-:h-:m-sc{ }farthccmrdmatcnct In its parameters of the net, the matrix of the
affinor 2 has the form

ME 0 G
(45) BI=l o -
¢ .. 0

From (4.4] and [4.5] we compute the fallowing non-zera compenents of P:

PJ Elﬂikh PEJE = 2}'3%“ -E';Iﬂﬂ 1= _":"'S-I;Iﬂﬂ 1

PJ:nu_:nu—_-:"-S%nu:mir R;:mi:_lﬂjﬁnur -%JnIE:_E‘J'S%ﬂIiEr
(4.6) Pﬁk—ﬂlﬂg F}JJ:=EJ*SJ:M P:ilﬁﬂli_}"gjﬁﬂli

Pjﬂnllﬂﬂli_}"g-ﬁjﬂli,ﬂﬂlil Pl-":m:tzlﬂjzmur P:Jn|:|.r—2-:"-3“1:m|:|.rr

P:Iﬂli ::I-reI:I. -ﬁﬂfli_}ISﬂﬂli FI:":—},SEEII

E sk oo

Pyt = mﬂﬂ“. Fzil=asnil,  Enlh= skl

Then, according to (4.4)], equalities (4.4) hold iff [4.2] hald, too. C

From (4.1] and (4.2) we get the non-zero components of ‘T expressed by the compa-
nents of I and 5:

§ ) Il Ad¥ a a i )
l'f,k_l'“' +S-5Jkp Pi: %:r r-;lﬂﬂljj= An{ls
[4‘?] ird' = PJ' + S'EJP ird; = 'Sifl irjjm F1F = Paniss
1 Z:I 1 1 el R | be, - B | e R A |
ngﬂlli_ :;ﬂlliﬁ P?ﬂ | _SE;‘EIIIF 1P:H1I1.:|ﬂ|1: ﬂli..:lﬂli"

Having in mind (4.7], we compute the following components of the curvature tensor
1R .Y
o

4 - 1 4 - 1 4 A -
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i i J_ ip el _
Rn:k - Rn:_I - Rnﬂb =0,

Rl = (‘3 Fat S‘[‘m :].:.] TRl =12 (‘?TISL +Sfi|.:|3:5]ajl r
1Rt 1 :2( S:nu +Sro=|1:|:l| :nl:l:].
Ri = Rai +2 (‘5'1:311].: + T S+ S Thpe + stmﬂi]e:l '
iﬂﬂzr = anj + 2 (‘E’IE*S'%]I+ [EE|S.JEJ'|T+ Sf;.?hﬂrg]!"l' ‘5T3.=5|3§1r:l .

42, A metric connection. Let V5, 1 be a space with ¥V, ;‘:'f = (, and let us consider
the connection

(4.5 :l""ﬁ =Tas+ nﬁ,

where
Al

(4.9) ag = Z Va g-ﬁ"z (Jc k |1=Jr a f k?:) ‘

The covariant derivative and the curvature tensor with respect to the connection 2" are
denoted by *7 and 2R.

Theorem 4.2. The metric fensor of the space Vi, 1 15 parallel to the connection
ar, i.e.

(4.10] W agap=10.

Proof. From (4.8) and (4.10] we get

(4.11] H?anﬁz?ggaﬁ—éﬁﬂ gl,ﬁ—éi,’ﬁ Tras
Let us consider the tensor
(4.12) Trag = Shats

According to (4.9] and (4.12], we have

Al "

— r X - w & F a
49 Top= 3, o0 (1,00 10,7 ) 9

r=1 k=1

In the parameters of the coordinate net {-ar

ﬂ} we obtain

Al [F

ﬂ'ﬂ - E : i?ﬂ' E :
A= -fmck 1,.-"51: b kin
fram where it f.:r].'laws 't.hat.

(Oa kin Ogk — Jgkin Oak]
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(4.14] Totag) = 0.
Then, (4.11], (4.12) and (4.14) imply (4.10]. C
By (2.4) and (4.9] we obtain the components of the deformation tensor 5 of % and

then by (3.7) and (4.8) we get the non-zero Christoffel symbeols of *7 in the parameters
of the coordinate net as follows:

2 — Tk
T, - Orfs miy,

nbS T A Tnd ns
a z:frl.—.l: n=k
PJnI.EnI.': T T One g g At i
::Irl'ﬂl_:l — -,‘.ﬂ'“
(4.15] sk VT Tnsi ns Gakey

::Ir.'l? |_J _ T ﬂ'rl.—J =8
nls kT wﬂ'}:-\-ﬂ'n—:n:gjh

a xﬂ'irl-—'l. Fn=1
P%Inl:l. nls —

-»,-E—»,-ﬂ'n-—.:- n=j Gnis ntay

a - xﬁrl-—'l. Fn=1
r;;“ F1 & ™ F5yTnti ned ok

By (4.15) we compute the components of the curvature tensor ? R, for example

ﬂRﬂpJ:Rﬂer nR_J_Rsk_pJ' :'REEE”:IJ.

:IR — Tn-os nza '\..-!FPP _ :] + Tnzx n=el
sk s T Vs (‘3" o T E ) Vs R Ta gl s

_ I-— 4 1
E'! =1 .F'! g ﬂ'.!:_;m—n: ru—J

2 ) ‘Fanz1 3n—1( ™ _a ]]
Rolie.= o g”m.:' ks — Uk g”

=i nsj

As an example we consider a 5-dimensional Riemannian space V5. The matrix [2.5)
has the farm

(4.16)

Fe U ]
(4.17] lgagll =] © gz © |,
] 0 s

where 7, k,5=1,2,7,k,5= 3,4
In the parameters of the net {f.r} the line element if given by

(4.18) A = g, (0)d8dE + g, (4)dEdE 4 gua(B)d82.
From the last one of the equalities (4.16) we get
v 1 12
419 1R, 3= V= ( = ) .
(4.19] Fzaa 7 1LIII,Eﬂn!i 12 — & o

Since g T4y = §8aga1, (4.19) implies

_ /s _ F12
(4.20] Rpa” = ,L,.-'—(E,L,.-'——aagn ﬂiﬁ) .
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MIKUSI<SKI'S OPERATIONAL CALCULUS APPROACH
TO THE DISTRIBUTIONAL STIELTJES TRANSFORM

DENNIS NEMZER

ABSTRACT

We consider a space M which was introduced by Yosida to provide a simpli ed version for Mikusi«ski
operational calculus. The classical Stieltjes is extended to a subspace of M and then studied. Some
Abelian type theorems are presented.

1.INTRODUCTION

The ring of continuous complex-valued functions on the real line which vamsh on
(—oo,0), denoted by C(IR), with addition and convolution has no zero divizors by Titch-
march's theorem. The quotient field of €. ([R) iz called the field of Mikusinski operators
[6].

Yosida [10] constructed a space M in order to provide a simplified version for Mikusinski’s
operational calculuz without using Titchmarch’s convolution theorem. Even though the
space M does not give the full space of Mikusiriski operators, it contains many of the
important operators needed for applications.

In this note, we use the space M(r) C M to extend the classical Stieltjes transform. It
twrns out that M(r) is somorphic to the space of distributions J'(r). Roughly speaking,
a distribution T, which is supported on [0,00),1s in J'(r) provided there exist k € [ and
a locally integrable function f satisfying a growth condition at infinity such that T is the
kt® distributional derivative of f.

The space J'(r), and variations of J'(r), have been investigated by several authors
[2, 4, 5, 7, 8, 9] in regards to extending the Stieltjes transform.

While the construction of J'(r) requires a space of testing functions, the concept of
a dual space, and functional analysis, the construction of Mir) 1z algebraic, elementary,
and only requires elementary calculus.

Let &' ([R) denote the space of all contmuous functions on E which vanish on the
interval (—oao,0).
For f,g £ C.(R), the convolution 1z given by
i

(2.1) (f*g)it)= | f(t—z)g(z)dz.

0
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Let H denocte the Heaviside function. That is, H(t) = 1 for t > 0 and zero otherwise.
For each n € [4, we denote by A" the function H+---+ H where H 1s repeated n times.
The space M iz defined as follows.

M:{%:IEGJ‘ELEEN}.
Two elements of M are equal, denoted ﬁ;: o= .ifand only if ™ * f = H"+ g.

Addition, multiplication, and scalar multiplication are defined in the glatu:al way, and
M with these operations is a commmtative algebra with identity 6 = .

f g H™+f+H"ag

[:EE:I Hn + Hm Hn+m
f g f4g
f af

(2.4) QF = e a e,

The generalized derivative iz defined as follows.
Let W = gy € M. Then, DW = gf-.

Remark 2.1, For the construction of M, the space of locally integrable functions
which vamish on (—o0,0) could have been used instead of CL(R) . Also notice by
identifying f € L} (RY) with %l € M, LL,(R") can be considered a subspace of
M.

3. STIELTIES TRANSFORM

For k=0,1,2,...
(3.1) Me(r) = {% € M: F() 7 is bounded as t — oo for some o > n}
(3.2) M(r)= | Mx(r)
k=0

Let W € M(r). Thatis, W = & € Mg(r), for some k € . For r > —1, define the
Stieltjes transform of index r by
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(3.3) MW =(r+ 1k j:ﬁ E f(£) dt, ze€C\(—oo0,0),

t+ z)rtktl

where (r + 1) = E{ﬂ“‘:_%l—] (r+ 1)(r+2)---(r+k)and I is the gamma function.

Remark 3.1,

(1) The definition for the Stieltjes transform 1s well-defined. This follows by
observing the following. First, 4 = & (n > k) if and only if g = H" %4 f.
Also, for m € 4,

f H™ 4 f
M (gx ) =8 (Gt ) 2 € Q0,00
(2) Notice that the Stieltjes transform AL 1s consistent with the classical Stieltjes

transform SI. That w5, 1if f € Li,.(R7) such that f satisfies the growth con-

dition m (9.1) with k =0, thgﬂﬂgfzﬂ;(ﬂﬁi)’whm Sof= [ O g

The Stieltjes transform can be obtained by iteration of the Laplace transform.

_ T I — 1 . — 27
Theorem 3.1. Let W = i € Mir). Then, AIW = T+ 1)»/1; e W (t) dt,
Re(z) = 0, where
[a ]
(3.4) W{tj:t“f{tj:t“f e ' f(o)de
0
Proof.
1 F e 1 T el gk
3.5 TEEWI(H dt = ThETER dt
(35) 1"['.7'+1]1.£ ¢ wit) I'(r+ 1]|,£ j; ¢ flo)do
Because of the growth condition on f, the interchanging of the order of integration 1s
Justified.
Hence,
(3.6)

PI—E:I_ 1 j:ﬂ Lmﬂ_{’+ﬂj* £k f(g)do dt = I‘(r—{l-ljl‘/,;mﬂaj (j;mc_{’+”]* gk &) do
Tir+k+1) f“‘ fle)
o

T(r+1) g+ z)rtk+l
= .ﬂ.:w, Rez =0

Therefore, by (3.5) and (3.6),

1
I'(r+1)

=)
AW = f e "W (t) dt, Re(z) > 0.
o
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Remark 3,2, The Laplace transform operator (3.4) has stmalar properties as the
classical Laplace transform (see [1]).

The proofs of the following properties follow directly by using the previous theorem
and the properties of the Laplace transform.

Properties. Let W = g € M(r). Then for r > —1 and z € ©'( —00, 0],

(1) AL7eW = AT W, c>0and W = J, mf(t) = f(t —c).

(2) ALD™W = (r + AT W, m = 1.2,...

(3) 47 ATW = (—1)™(r + DA ™W = (—1)"ATD™W, m = 1,2,...

(4) ﬁ““f-‘(tﬁfj ATW — zATPIW, where tW = 5t — i, k> 2.
Theorem 3.2, Let W € M(r). Then, there erist positive numbers a and § such
that

(i) AW =o0(z27%) as 2 = 0, argz| <¥ < I.

(@) AIW =0(z7F) as z = o0, |argz| <¥ <
Proof. Let W = j!.-’-r; € Mi(r), where for some positive constants A, a, and 7,

[f(E) < M2, for t > .

(i) ATW = gk (775 F(2))"(2), Rez > 0.
Now,
+k F
% = f(t) = 0ast— 0.

Therefore, by a classical Abelian theorem for the Laplace transform [3],

;H-Hl [:f*+k_'i,?‘(mn

m
— 0 — 0, < —,
T ka1) as z largz| < <

2

Thus,
l_iﬂ. ;1*+k+.1ﬂ1;w —0.
|ar gz [<yhe
This completes the proof of (i). Now, for the proof of (ii). There exist A > 0and B > 0
such that

EEF()] < AR 4 ﬂi, (see [7], p. 211).
Thus, the function £ % f{t) is locally integrable on [0, 00).

Now,
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1 .= .
W) < gy [ et R R e ae

< 1 fme—tREz(AtHk+ E)dl'.'
“T(r+1) J; p—=

c N D
(Rez)™ %1  [Rez)

for some positive constants C, D.
Thus,

—» Rez >0,

. 1 )
lim  zPATW =0, where § = 5 min{e.r +k+ 1}
largz|<y<

This completes the proof of the theorem.

4, LOCALIZATION

Definition 4.1, Let W = Jx € M. W 1s said to vanish on an open mterval (a,b),
denoted W(t) = 0 on (a.b), provided there emists a polynomial p with degree at most
k —1 such that p(t)= f(t) fora <t <b.

The support of W £ M, dencted supp W, i1s the complement of the largest open set
on which W vanishes.

Remark 4.1,

(1) The definttion of W vanishing on an interval does not depend on the repre-
sentation of W.

(2) The notion of an element of M wvanishing on an mterval 15 consistent with
the notion of a function vanishing on an wterval. That 15, f(t) = 0 for
a <t<bif and only if Wy(t)= 0 on (a,b), where f € C.(R) and W, = L.

(3) It follows that of W(t) = 0 on (a.b), where @ < 0, then f(t) = 0 for all
a<t<b where W= .

Example 4.1, Recall § = {5’; Notice that H*(t) = t on the open terval (0,00).
Thus, 8(t) = 0 on (0,00). Albso, H(t) = 0 on (—o0,0). Se, d(t) = 0 on (—oca,0).
Therefore, supp & = {0}.

2 0<t<2
Example 4.2. Let W = oz, where f(t)=¢ t+2 t3>2
0 t< 0.

Then W has compact support. Notice that W vanishes on (—oo0,0) U (0,2) U (2,00),
and hence, supp W = {0} U {2}.
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Theorem 4.1, Let W e M. If DW(t) =0 on (a,b), then W 15 constant on (a.b).

Proof. Let W = 4; such that DW = gfr = 0 on (a.b). Therefore, there exists a
polynomial p(t) = ap + eyt + ...+ axt® such that f(t) = p(t), for all @ < ¢ < b. That is,

F—Ka H" = oo + oy H* + -+ (k— )lap 1 H* on (a,b).

Thus, .
f KHoH
F - H—kz 0 on (ﬂ,b]l.
That is, W = gz = klax. H on (a. ). O

Apmriam Tumn

E, nma
Lemma 5.1, Letk €, a>0, andr > —1. If f € L}, .(RT) such that f{t)t " 5= 13
bounded on [b,00) (for some b > 0), then
L= HTE%@“L‘_'FT dt 15 bounded i the half-plane Rez > 0.

The following iz an mitial value thecrem.

Theorem 5.1, Let W € M(r) and v > —1. If W(t) ~ ¥ as t — 07, then for r > v,
L TT(r+ AW
!—lﬂ T'ir—v)l'r+1) =&
|args [<dr &
Proof. Since W(t) ~ £t¥ as t — 07, W(t) = Wy(t) on (—e,¢) for some £ > 0, where
g€ L}, (ET) and ?‘—:# — £ ast — 0. We may assume that g(t) = 0 on [g,00).
Now, W = Wy + V, where for some k € 4, V € My (r) and supp V C [£,00). Thus,
by a classical Abelian theorem for the Stieltjes transform and the previous lemma, we

obtain
T VTr +1)A%g B

= .f,
|ﬂ1‘9‘;|?:r1;|!"{ g Tir—)T'(r+ 1)
and,
V(e + ATV
|arg£|_'{r:;!n{ : Tir—2)T'(r+ 1)
Therefore,
. 2T e+ AW
=0 Tir—vT'(r+1) =&

largz|<ge T
O

Lemma 5.2, Leta >0 and k €. Then, forn=0,12,.... k=1 and r > v > —1,

lim 2% fm & dt = 0.
g ey
i
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Frogf. Follows by induction on k. O
MNow, the final value theorem.

Theorem 5.2, Let W € M and v > —1. If W(t) ~ £&* as t — oo, then for r > v,

ST MW

im
large g Tir—v)T'(+ 1)

Froof. Since W(t) ~ £¥ ast — co , there exist & € 4, ¢ > 0, a polynomial p, and
g € L}..(R7) such that supp g C [c,00), deg p< k— 1, and f(£) = (H*+ g)(t) + p(t) on
(¢, c0) with i;frl — {as t— oo.

It follows that W € M(r) and that W = W, + V, where V = f:,’{{‘—*ﬂ € Mg(r) and
supp V C [0,¢]. By using a classical Abelian theorem and noting that AIW, is the same
as the classical Stieltjes transform of g, we obtan

ZVT(r + AW,

_ ¢,
|m-g§|_'~:°::u:3 Tir—v)'(r+1)
Now, letting T = f — H* + g, we obtain
_ T TiE)
TV =(r+ k2" ”‘/.;; (t+ z)r kL
B e TR = plt)
= (7- + 1:'1: z7 L'L ["t_l_ ;:If+k+l dt + ET+ lzlk ;1“—1;‘/; [:t+ z:IHIH-l dt.

Ey the previous lemma, for Re z > 0, it follows that the himit of the second term converges
to zero as z — oo. Now, for Re z = 0,

2 f T gl < |;|—‘=—”—lf|:"(t)|dr—> 0as z = o0.
o [t+ ;)f+k+.1 - o

The proof of the theorem 13 completed by observing that
;f—ﬂﬁzw — ;f—ﬂﬂl"wg 4 ;f—ﬂﬁ:"['{

O

Az g final remark, the map ];!:; — D*f is a well-defined linear bijection from M(r)
onto J'(r), where D denotes the distributional differential operator [11] and

J(r)=4D"f k€W, f € L} (RT), f(£)t "% bdd as t — oo for some a > 0}.

Moreover, the Stieltjes transform for —J.-!.’:; £ M(r) and the Stieltjes transform for D" f €
J'(r) are equivalent.
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