AIMS Public Health

Volume No. 12
Issue No. 3
September - December 2025

ENRICHED PUBLICATIONS PVT. LTD

S-9, IInd FLOOR, MLU POCKET,
MANISH ABHINAV PLAZA-II, ABOVE FEDERAL BANK,
PLOT NO-5, SECTOR-5, DWARKA, NEW DELHI, INDIA-110075,
PHONE: - + (91)-(11)-47026006

AIMS Public Health

Aims and Scope

AIMS Public Health is an international Open Access journal devoted to publishing peerreviewed, high quality, original papers in the field of public health. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.

AIMS Public health welcomes, but not limited to, the papers from the following topics:

- Behavioral health
- Clinical medicine
- Community health
- Environmental health
- Epidemiology
- Health care services
- Nutrition and public health
- Occupational health

Editorial Board Members									
Alessandro Leite Cavalcanti Department of Dentistry, State University of Paraiba, Brazil.	Andreas Sönnichsen Department of General Practice and Family Medicine, Center for Public Health, Medical University of Vienna, Austria								
Andrew Macnab Departments of Pediatrics, Urological Sciences and Family Practice, Faculty of Medicine, University of British Columbia, ancouver, Canada, and Stellenbosch Institute for Advanced Study, Wallenberg Research Institute at Stellenbosch University, South Africa	Carla M. A. Pinto School of Engineering, Polytechnic of Porto, Portugal								
Dr. Sonia Gupta Faculty Of Management, Department in Teerthankeer Mahaveer University-P.hD ,M.A Economics(Gold Medalist), M.B.A	Clemens Drenowatz Division of Sport, Physical Activity and Health; University of Education Upper Austria, Austria								
Daglia Maria Full Professor of Food Chemistry at the Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples – Italy	Donald B. Giddon Faculty of Medicine, Harvard University, 188 Longwood Ave, Boston, MA 02115, USA								
Dr. Yogendra Nath Mann Associate Professor : Banking & Finance Dr. Gaur Hari Singhania Institute of Management & Research, Kanpur	Dr. Manisha Singhai Asst. Prof. (HRM/OB) Prestige Institute of Management and Research Indore								
Emanuele Amodio U.O. Servizio Epidemiologia e Programmazione Dipartimento PAC, Agenzia di Tutela della Salute (ATS) della Brianza, Corso Carlo Alberto 120, Lecco, Italy	Fenglin Cao School of Nursing and Rehabilitation, Shandong University, China.								
Fradelos C. Evangelos Department of Nursing, University of Thessaly, Greece	Galanis Petros Department of Nursing, National & Kapodistrian University of Athens								
Gareth Morgan Department of Planning and Primary Care, Hywel Dda Health Board, Heol Cropin, Llanelli, Carmarthenshire SA14 8QW, NHS Wales, Wales, UK	Giustino Varrassi Paolo Procacci Foundation, Former Professor of Anesthesiology and Pain Medicine, University of L'Aquila, 67100 L'Aquila, Italy								
Haslyn E. R. Hunte School of Public Health, Robert C Byrd Health Sciences Center, West Virginia University, PO Box 9190, Morgantown, WV 26506-9190, USA	Hell Markus Head of division of Medical Microbiology, Institute of Laboratory Medicine—Paracelsus Medical University, Salzburg, University Hospital, Salzburg, Austria								
Hilary Karasz Public Health – Seattle & King County, 401 5th Avenue, Suite 1300, Seattle, WA 98104, USA	Hsin-Hung Wu Department of Business Administration, College of Management, National Changhua University of Education, Changhua, Taiwan								

Huabin Luo Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.	I-Shiang Tzeng 1.Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; 2. Department of Statistic, National Taipei University, Taipei, Taiwan;
Jacob Heller Sociology Department, SUNY College at Old Westbury, USA	James A. Swartz Jane Addams College of Social Work, University of Illinois at Chicago, 1040 W. Harrison Street, MC 309 Chicago, IL 60607, USA
Jangho Yoon School of Social and Behavioral Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA	Junfeng Jiao School of Architecture, The University of Texas at Austin, Austin, TX, 78759, USA
Liping Li School of Public Health, Shantou University, Shantou 515041, China	Luca Testarelli Department of Maxillo and Oro-Facial Sciences, University of Rome La Sapienza, Rome, Italy
Dr. Yogendra Nath Mann Associate Professor: Banking & Finance Dr. Gaur Hari Singhania Institute of Management & Research, Kanpur	Dr. Manisha Singhai Asst. Prof. (HRM/OB) Prestige Institute of Management and Research Indore
Maciej Henneberg Emeritus Wood Jones Professor of Anthropological and Comparative Anatomy, School of Biomedicine, The University of Adelaide, Australia	Mark Menniti Stecker Fresno Institute of Neuroscience, 1558 East Shadow Creek Drive Fresno, CA 93730, USA
Marco Tatullo University of Bari-Italy	Mario Coccia National Research Council of Italy, Italy
Martha Slay Wingate Martha Slay Wingate, University of Alabama at Birmingham, 1665 University Boulevard, Birmingham, Alabama, USA	Martin Burtscher University of Innsbruck, Dept. of Sport Science, Innsbruck Austria
Michelle G. Dresser Bureau of Chronic Disease Prevention & Tobacco Control, NYC Department of Health and Mental Hygiene, Gotham Center, CN-18 42-09 28th Street, 9th Floor, Queens, NY 11101, USA	Miguel Viñas Ciordia Dept of Pathology&Experimental Therapeutics Medical School, University of Barcelona, Catalonia, Spain
Roy G. Beran Western Sydney University, School of Medicine, 80 Goldsmith Avenue, Campbelltown, Sydney, Australia	Russell Kabir School of Allied Health, Faculty of Health, Education, Medicine & Social Care, Anglia Ruskin University, Bishop Hall Lane Chelmsford, UKChanghua, Taiwan

Samuel Asumadu Sarkodie Nord University, Norway	Shahab S. Band Department of IAI, National Yunlin University Science and Technology, Taiwan
Sónia F. Dias Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal	Stefano Campostrini Department of Statistics, University Ca Foscari of Venice, Venice, 30121, Italy
S. R. Pandi-Perumal Somnogen Canada Inc., College Street, Toronto, ON M6H 1C5, Canada	Vijay Kumar Chattu Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto- Canada
Wendy Cozen Department of Preventive Medicine, USC/Norris Comprehensive Cancer Center,1441 Eastlake Ave. MC 9175, Los Angeles, California, USA	

AIMS Public Health

(Volume No. 12, Issue No. 3, September - December 2025)

Contents

Sr. No.	Articles / Authors Name	Pg. No.
1	Predicting emerging and re-emerging disease outbreaks through internet search trends: An analysis from India -Sudip Bhattacharya*	01 - 03
2	Marijuana use among adolescents is associated with deleterious alterations in mature BDNF -Maria Jose Miguez 1,*, Wenyaw Chan 2, Luis Espinoza 3, Ralph Tarter 4 and Caroline Perez 1	04 - 16
3	Clusters of alcohol abstainers and dr inkers incorporating motives against drinking: a random survey of 18 to 34 year olds in four cities in four different continents -Anne W Taylor1,*, Bridgette M Bewick2, Qing Ling3, Valentina V Kirzhanova4, Paulo Alterwain5, Eleonora Dal Grande6, Graeme Tucker7 and Alfred B Makanjuola8	17 - 34
4	Population insight of the relationship between lifestyle and cancer: A population-based survey -Fawaz Dabea Alshammari1, Hussain Gadelkarim Ahmed2,*, Dena Alshammari1, Ahmed Mulfy Alharbi1, Atif Saud Alsaedi1 and Abdulbaset Elasbaly3	35 - 51
5	Psychometric properties of the workplace psychologically violent behaviors-WPVB instrument. Translation and validation in Greek Health Professionals -Aristotelis Koinis1,*, Emmanouil Velonakis2, Chara Tzavara3, Foteini Tzavella1 and Styliani Tziaferi1 Elasbaly3	52 - 69

Predicting emerging and re-emerging disease outbreaks through internet search trends: An analysis from India

Sudip Bhattacharya*

Himalayan Institute of Medical Sciences, C-5/12, HIHT campus, Dehradun

Keywords: outbreaks; infectious disease; surveillance

Early detection is the key for the prevention and control of any communicable diseases. In India the Integrated Disease Surveillance Programme (IDSP) was launched in November 2004 for surveillance purpose. In this portal, most of the Indian districts report data for 22 epidemic prone notifiable diseases.

This one stop portal can also respond to the outbreaks through skilled and well equipped Quick Response Teams (QRTs) [1]. Presently under IDSP, the information is collected on three specified reporting formats, namely "S" (suspected cases/syndromic), "P" (presumptive cases) and "L" (laboratory confirmed cases). "S" form is filled by the health workers to report data on suspected cases/syndromes. "P" form is filled up by Medical Officers to report data on probable/clinically suspected cases. "L" form is designed to collect data on lab confirmed cases.

The obtained data flows from bottom to top via S, P, and L forms. i.e., community to national level. An outbreak is detected by this surveillance mechanism takes about 7 to 10 days, which is dangerous for rapidly spreading diseases like swine flu, bird flu, nipah virus etc. Therefore, supplementary system to this IDSP will play a great role in collecting timely data on epidemic prone communicable diseases which may minimize the influence of unprecedented outbreaks. An innovative surveillance mechanism for predicting disease outbreaks—embedded with internet search behaviour of the population has currently emerged as a promising technique [2]. Now a days, internet use via cell phone in India is rapidly increasing [3,4]. Recently, a large proportion of medical or health-related information are flowing to the cell phones via internet [5]. Recent data indicates that primary sources of information flows through the Internet in most of the communities [6–9].

Presently, big multinational companies are using search data (after data mining) for monitoring purposes as well as for marketing purpose. Among all, e-news, social network data, and blog data are used as the main source [2]. This whole procedure is commonly known as "nowcasting" [10]. This "nowcasting" process can help us to estimate the magnitude of outbreaks by near real-time in early stages of an outbreak. Additionally, this process can be embedded with the existing healthcare setup. Hence, this

approach is quite useful in resource-poor countries where their health systems are already overburdened. It is established from various studies that "Google Trends" may be a useful instrument for disease surveillance [11,12]. This instrument can act as an add on measure to the existing IDSP system for timely disease surveillance. A study conducted by Verma M et al. in India with an objective to evaluate the temporal correlation between Google Trends and conventional IDSP data in Haryana and Chandigarh (U.T.) [13].

Google search was conducted for febrile illness like malaria, dengue fever, chikungunya, and enteric fever for the abovementioned area in 2016. Those extracted data were compared with the IDSP data (only P form). Google search trends and IDSP reporting showed temporal correlation. A lag of -2 to -3 weeks was observed between google search trends and IDSP data.

That study had some limitations. 1) The study used only the 'P' form data of febrile cases as it is difficult to differentiate the fever cases reported in "S" form. 2) Also, "L" form data also was excluded due to delay in lab reporting. 3) External validity was also emerged as an important concern. 4) Due to cultural diversity in India there are language differences. As Indians, we also do use social media/transfer of edata in our vernacular language. In that study only, English language was used for data retrieval, which underestimates the actual value/burden and thus error was occurred in the calculation of correlation. 5) As Google Trends does not provide data at intra-province level, the established correlation may not help to identify the hotspot of an outbreak or epidemic. 6) Varied strength of positive correlation was observed with all febrile illnesses which may not have much significance. 7) Besides Google search, people may communicate/retrieve data via various search engines like, SIRI, Bing, E- Explorer or they may use social media like Facebook, Instagram or Twitter etc. 8) Lastly, seasonal variation could not be identified as the data was collected for short period of time (1 year only).

Despite of limitations, this google based surveillance system can reinforce the existing IDSP system. This kind of outbreak predicting intelligence system may be experimented at the ground level covering the larger communities in resources constraint areas like India. Mathematical modelling techniques can be incorporated in the future studies for accurate forecasting of epidemics and outbreaks for better adjustment of confounders. Not only "Google search", other portal sites like "E-explorer", "SIRI", "Bing" and other search engines can be used for data mining and disease surveillance in the future.

In spite of the massive potential of this application, this technique should be used as an add-on to the existing surveillance systems. As we are now used to work manually (filling IDSP forms), training and retraining (for filling digital forms) of the peripheral health workers are the key for successful

implementation of this intelligence system. However, the results of this study hold promise in Indian scenario for forecasting of emerging and re-emerging diseases outbreaks in near future.

References

- 1. Ministry of Health & Family Welfare, Government of India. Integrated Disease Surveillance Programme [Internet] New Delhi: Ministry of Health & Family Welfare; c2018 [cited at 2018 Jul 4]. Available from: http://www.idsp.nic.in/.
- 2. Milinovich GJ, Williams GM, Clements AC, et al. (2014) Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis 14: 160–168.
- 3. Hoffman DL, Novak TP, Venkatesh A (2004) Has the Internet become indispensable? Commun ACM 47: 37–42.
- 4. Telecom Regulatory Authority of India. The Indian Telecom Services Performance Indicators, April—June 2017 [Internet] New Delhi: Telecom Regulatory Authority of India; 2017 [cited at 2018 Jul 4]. Available from:
- http://trai.gov.in/sites/default/files/Performance Indicator Reports 28092017.pdf.
- 5. Hellawell GO, Turner KJ, Le Monnier KJ, et al. (2000) Urology and the Internet: An evaluation of internet use by urology patients and of information available on urological topics. BJU Int 86: 191–194.
- 6. Tonsaker T, Bartlett G, Trpkov C (2014) Health information on the Internet: Goldmine or minefield? Can Fam Physician 60: 407–408.
- 7. Hesse BW, Moser RP, Rutten LJ (2010) Surveys of physicians and electronic health information. N Engl J Med 362: 859–860.
- 8. Diaz JA, Griffith RA, Ng JJ, et al. (2002) Patients' use of the Internet for medical information. J Gen Intern Med 17: 180–185.
- 9. Moretti FA, Oliveira VE, Silva EM (2012) Access to health information on the Internet: A public health issue? Rev Assoc Med Bras 58: 650–658.
- 10. Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Rec 88: 2–9.
- 11. Bragazzi NL (2013) A Google Trends-based approach for monitoring NSSI. Psychol Res Behav Manage 7: 1–8.
- 12. Kang M, Zhong H, He J, et al. (2013) Using Google Trends for influenza surveillance in South China. PLoS One 8: e55205.
- 13. Verma M, Kishore K, Kumar M, et al. (2018) Google search trends predicting disease outbreaks: An analysis from India. Healthc Inform Res 24: 300–308.

Marijuana use among adolescents is associated with deleterious alterations in mature BDNF

Maria Jose Miguez1,*, Wenyaw Chan2, Luis Espinoza3, Ralph Tarter4 and Caroline Perez1

- 1 School of Integrated Science and Humanity, Florida International University, Miami, USA
 - 2 Department of Biostatistics and Data Science, University of Texas, Houston, USA
 3 Department of Medicine, University of Miami, Miami, USA
 4 Center for Education and Drug Abuse Research, University of Pittsburgh,
 Pittsburgh, USA

ABSTRACT

Background: With increases in marijuana use and legalization efforts, it is imperative to establish its impact on the developing brain. Therefore, we investigated whether exposure to marijuana alters brain derived neurotropic-factor (BDNF), given its critical role in brain development and plasticity. We then examined whether onset age of cannabis use was associated with more severe changes. A single site, cohort study following 500 urban healthy American adolescents. Changes in plasma m-BDNF levels were longitudinally assessed, and a multi-method approach was implemented to ascertain marijuana use. Multivariate and general linear model (GLM) regression modeling were utilized to test the main hypothesis, controlling for confounders. Results: Group-based trajectory modeling identified four distinct groups, characterized by naive (60% control), starters (14%), chronic users (20%), and experimenting/quitters (6%). Compared to controls, those initiating marijuana use had similar preexistent m-BDNF (1939.2 ± 221 vs. 2640.7 ± 1309 ng/ml, p=0.4) After adjusting for confounding factors, GLM analyses revealed that, compared to controls, younger adolescents increased BDNF levels when experimenting and during moderate marijuana use. Older adolescents had a steeper increase in endogenous BDNF levels, particularly when escalating use. Multivariate analyses confirmed marijuana use as a predictor of m-BDNF (p = 0.001). Conclusions: This is the first study demonstrating BDNF alterations were not a precondition. Rather, BDNF alteration was secondary to marijuana use, serving as cautionary evidence of marijuana's deleterious effects. Findings suggest that when marijuana use escalates, the BDNF pathway becomes more deregulated. Analyses confirm that age of marijuana use onset influences the magnitude of these changes.

Keywords: Marijuana; adolescent; Brain Derived Neurotrophic Factor (BDNF); brain development; smoking

1. Introduction

With approximately 147 million users, marijuana the cannabis sativa plant, is by far the most common drug used worldwide [1–2]. Noteworthy, global analyses revealed an overall rise in the prevalence of lifetime cannabis use by adolescents [3]. The dangers of marijuana products are disquieting when

considering the increased potency of today's cannabis, and its rapid passage to a brain still under development [4]. Yet, the controversy over marijuana's dangers versus "safety" is ignited with contradictory findings. In addition, current knowledge is largely inferred from studies in animals, adults, and subjects with pathological conditions (i.e., schizophrenia) [5–8]. It is remarkable that very few studies focused on adolescents, even though the onset of marijuana use typically occurs during this developmental period. The ability to draw definitive conclusions from studies pertaining to the adolescent population is often limited by cross-sectional designs, the concurrent use of multiple substances, and the lack of information regarding pre-existing biological integrity [3,9].

Adolescent exposure to cannabis normally occurs by smoking cannabis joints, which contain over 421 different chemicals, including over 60 cannabinoids, yet most in-vitro studies only use Δ 9tetrahydrocannabinol (Δ 9-THC) at a fixed dose [10]. Active ingredients vary in concentration by strain (e.g., Sativa vs. Indicas), and their effects are not limited to the endocannabinoid system [11]. Moreover, they are the result of direct and indirect cellular and network effects. As a result of this faulty, simplistic approach, knowledge regarding marijuana's biological mechanisms of action is also limited.

Given that cannabinoids can transactivate BDNF receptors, and considering BDNF's critical role controlling brain development, cognitive processes, and neuroplasticity, it is surprising that very little research on BDNF in this context has been done [12–15]. Though BDNF has been widely studied for its ability to support neuronal development and plasticity, other less beneficial effects has been discovered. Data from animal models indicated, albeit with some exceptions, that BDNF also contributes to the enduring synaptic plasticity that underlies drug addiction [16]. The few studies examining the relationship between BDNF and marijuana in healthy humans has been inconclusive. They were mostly cross-sectional and performed on adults, and translating conclusions from them would be flawed, as marijuana leads to differential neurochemical effects in adolescence than during adulthood [6,13,17]. In addition, they used serum to measure BDNF, which is not considered a proxy of central nervous system levels, rather a proxy of platelets [9,13]. Given all these methodological limitations, it is impossible to draw conclusions about the long-term effects of cannabis use on these at risk population [18–19]. Building on prior studies, our study aim was to determine if the BDNF pathway becomes deregulated with the use of marijuana. We followed the trajectories of adolescents before and after the onset of marijuana use. Our design considered prior methodological approaches and knowledge gaps. For example, unlike many previous studies, we used poor platelet plasma (PPP), as studies have consistently demonstrated that PPP is both significantly correlated with, and can be used as a proxy for, CNS levels [20]. We also carefully selected a healthy population with little to no use of other drugs to avoid their confounding effects.

2. Methods

"ROBIM" (the Role of Brain Derived Neurotrophic Factor in Decision Making Participants) is a 5-year, longitudinal study based in Miami, Florida. Adolescents were recruited through direct outreach to community and health care centers. Hispanic adolescents were eligible if they did not have a history of a clinical disease (i.e., cancer, renal or heart disease), major neurological, or psychiatric disorder (i.e., autism, severe developmental problems, schizophrenia) that prevented their participation in the study. Adolescents receiving any neuro-pharmacological intervention, or taking bodybuilding substances (i.e. steroids, growth hormones) were ineligible.

2.1. Data collection

Visits were conducted by trained interviewers and consisted of a detailed medical history, physical/neurological examinations, structured survey questionnaires, and a urine test to corroborate self-reported drug use. The protocol was approved by the IRB's at Florida International University and the University of Miami.

2.2. Cannabis measures

Using the NIDA Quick Screen, participants were queried regarding the use of marijuana at any point in their lives, as well as any other legal (alcohol or tobacco) or illegal drugs [20]. If the adolescent reported marijuana use, we asked after the intensity of use and age at first use. Intensity of use/the frequency of use was defined as once, once in the last 30 days, once a week, 3 times a week, 4 times a week, once daily, several times per day, and quit. The age of debut was included based on evidence suggesting that the greatest risk effects of cannabis occur during early adolescence, but are moderate to negligible when first used above the age of 18 [17]. On the basis of their answers over the length of the study, the participants were divided into categories/trajectories: no substance use, "once or twice" substance use [(likely no substance use disorder (SUD)], monthly use (likely mild-to-moderate SUD), weekly/daily (likely severe SUD) and those that quit. Each of these classifications corresponds to an "actionable category" as distinguished by AAP, which recommends a distinct type of brief intervention for each one [21].

2.3. Brain derived neurotrophic factor

BDNF is initially synthesized as a precursor (proBDNF), which is proteolytically processed into mature BDNF (mBDNF)[22]. Since BDNF cross the blood brain barrier, it can be measured in the periphery [23]. Blood was drawn between 8 and 11 a.m. to minimize the effects of circadian rhythm. Platelet-poor

plasma (PPP) was obtained following standardized procedures and were assayed under blinded conditions. BDNF concentrations were quantitatively determined using the MILLIPLEX MAP Human Pituitary Magnetic Bead Panel from Millipore (EMD Millipore Corporation, Billerica, MA, USA). The assessments were done following the manufacturer's instructions.

2.4. Covariates

Information was collected on potentially confounding variables, including adolescent/parent sociodemographics (age, education, employment, gender, and country of birth) and medical history. We gathered information on variables known to affect BDNF, such as other abused drugs (e.g., amphetamines, barbiturates, tranquilizers, cocaine, heroin, opiates, PCP, psychedelics, inhalants, and steroids), exercise (Stanford 7-day survey), and body mass index [24].

2.5. Statistical analyses

Descriptive statistics (e.g., minimum, maximum, median, mean with SD for each variable, and the frequency and percentage for each categorical variable) were used to summarize the data. The dependent variable of interest was m-BDNF level. A between-group analysis was adopted to compare the levels of BDNF between naïve, current, and past users of marijuana. For continuous demographic variables, a two-sample t test was used for comparing marijuana user and non-users groups. For categorical variables, a chisquare test was applied for this comparison. Longitudinal linear mixed regression model was applied to examine the trend differences of BDNF between the two groups, separated by age younger than or older than 15 years old. Finally, multivariate regression analyses were also used to determine whether marijuana, contributed to the prediction of BDNF alterations, after sociodemographics, physical activity, nutrition, and other drugs were taken into account.

3. Results

3.1. Marijuana use

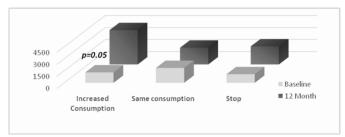
The proportion of adolescents reporting ever using marijuana at baseline was 26%, representing the most widely used substance in this population. An additional 5% reported trying marijuana in the past, but not using it anymore. By the 12-month evaluation, an additional 18 percent of the adolescents enrolled in the study began using marijuana. Use of other drugs (crack, cocaine, stimulants, prescription opiates, or club drugs) was only 5%.

The demographic characteristics of the adolescents by marijuana use groups (yes/no) are depicted in Table 1. The groups mostly differed in age; on average cannabis users were slightly older than non-users. Marijuana use was most prevalent among high school students (26%). Only 7% of middle school students reported current use of marijuana. As expected, at the beginning most cannabis use was intermittent, and low in amount, while older adolescents mostly reported weekly to daily use.

3.2. Mature BDNF in those beginning marijuana use

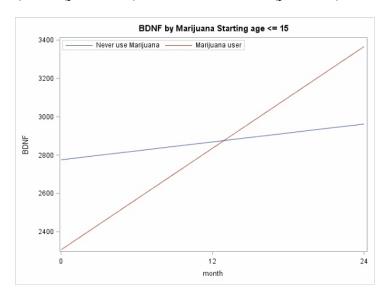
To resolve the quintessential dilemma of whether differences noted in BDNF levels can be attributed to predisposing characteristics, or whether they are a consequence of marijuana use, we evaluated BDNF levels in individuals that began using marijuana after baseline. By the 24-month visit, an additional 18% of the sample started using marijuana. Those initiating marijuana use have similar pre-existent m-BDNF levels compared to non-marijuana users (1939.2 ± 221 vs. 2640.7 ± 1309 , p = 0.4). At baseline, m-BDNF levels were slightly lower in those progressing to higher consumption (1297.3 ± 278.7), than those who continued consuming at the same levels (1860.9 ± 176.2 pg/ml, p = 0.6). However, at the 12-month evaluation, m-BDNF values doubled for those with a pattern of escalating use (4284.5 ± 1942.3 vs. 2093.4 ± 292.1 pg/ml; p=0.05 See Figure 1).

Table 1. Demographic characteristics of the adolescent population ($n = ^{\circ}490$).


Demographic Variable	Non Marijuana User	Marijuana User	P Values
Gender			
Male	48%	45%	0.4
Female	52%	55%	
Age In Years	14.5 ± 2.2	16.5 ± 1.4	< 0.001
Education	8.2 ± 2.3	10.0 ± 1.6	< 0.001
Income L ow/Poverty	41%	47%	
Middle	26%	25%	0.4
High Class	33%	28%	
Immigrant	23%	24%	
Born in the USA	77%	76%	0.9
Body Mass Index	23.3 ± 5.1	24.0 ± 6	0.5

Note: Differences in baseline sociodemographic measures between participants with and without marijuana use. Values are means \pm SD or percentages. No significant differences in sociodemographic characteristics were reported between groups except for age and years of education.

3.3. Longitudinal analyses


As most features of addiction develop progressively as a consequence of repeated exposure to the

specific drug, we analyzed the effect of marijuana use over the following 12 months. In contrast to baseline, high BDNF levels were evident among marijuana users compared to non-users (3731.1 \pm 903.4 vs. 2046.2 \pm 262.5, p = 0.02). In an effort to determine their trajectories, we compared changes longitudinally between younger adolescents <15 and those older.

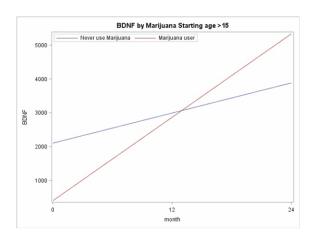


Figure 1. Impact of progressive marijuana use on BDNF levels. Pair wise comparisons of time points revealed that BDNF levels increased particularly in heavy users. BDNF remain high even after quitting suggesting that changes are long-lasting. Bars indicated the mean of the group at baseline (front line) and at the end of the study (back).

Figures 2A and 2B illustrate the importance of considering developmental stage when analyzing BDNF levels. Figure 2A depicts the mean BDNF over time separated by marijuana user and non-users for those who started their marijuana at age \leq 15. These models were based on longitudinal regression analysis, although marijuana use (p = 0.50), time (p = 0.24), and their interaction (p = 0.41) not significant. Figure 2B depicts the mean BDNF over time separated by marijuana users and non-users for those who started their marijuana at age \geq 15. These models were based on similar longitudinal regression analyses: marijuana use (p = 0.015), time (p < 0.0001), and their interaction (p = 0.012) were significant.

Figure 2A. BDNF by Marijuana Starting Age \leq 15. Illustrates the mean BDNF over time separated by marijuana user and non-users for those who started their marijuana use younger than 15.

Figure 2B. BDNF by Marijuana Starting Age > 15. Representation of m-BDNF levels at different time points and the trend of changes during the study period.

3.4. Final analyze

To assess whether marijuana use predicts BDNF levels, we performed a multivariate analysis using m-BDNF at the last visit as the dependent variable, and marijuana as the independent variable (see Table 2). To assure the absence of any other group differences, gender, age, body mass index, diet, exercise, stressors, and migration were included in the model as covariates. Significant effects for marijuana were found (p=0.014), meaning that marijuana use at baseline was associated with changes in BDNF levels.

Table 2. Regression analyses of BDNF at the last visit coefficients^a.

Model	Unstandard	lized Coefficients	Standardized Coefficients	t	Sig.
	В	Std. Error	Beta		
(Constant)	3026.408	1752.859		1.727	0.091
Marijuana use	274.89	136.97	0.120	2.007	0.04
Age	-151.394	111.915	-0.083	-1.912	0.062
Migration/stress	440.621	581.792	0.046	3.082	0.449
Body Mass Index	-2.976	46.966	-0.04	-0.063	0.950
Gender	-558.545	478.830	-0.069	-1.166	0.244

Note: P value using Logistic Regression likelihood ratio adjusted for sociodemographic, migration/stressors, family (income, attachment, type of family) and healthy behavior variables (nutrition, exercise, other drugs). Age and marijuana use were the only predictors of BDNF level at the last visit.

4. Discussion

The Healthy People 2020 initiative has set the goal to reduce the rate of adolescent marijuana use to six percent [25]. However, it only takes one look at the data from our sample (25% are regular users) to recognize that we are far from that goal. This widespread use should be alarming, since adolescence is a peak time for neurodevelopment, and subsequently a period of increased susceptibility to alterations in brain structure and function [2,6–8,26–29]. The present study specifically provides evidence that both initiation and regular use of marijuana predict changes in mature BDNF.

Although it is inherently difficult to establish causality in human studies, our methodological and design approaches provide a stronger basis for causal inference [30]. First, this study was longitudinal, which allowed for uniformity. Secondly, by i ncluding a sizable proportion of drug naïve subjects, and by pe rforming drug screening tests, we were able to establish that drug use preceded the outcome. Our study took measures to exclude alternative explanations for our findings. Participants passed a rigorous health screening, including medical history, physical exam, and blood testing to assure the inclusion of adolescents without comorbid developmental or neurologic conditions. We also collected information on several covariates that potentially impact BDNF, such as diet, exercise, sociodemographics, and other drug use. Finally, animal models have long provided support that the observed relationship between marijuana and BDNF is more than a simple association [4–5,12–13,15,28–29]. They have also provided the mechanisms of action by which these variables interact: a) activation of the extracellular signal-regulated kinase or b) through endocannabinoid transactivation of BDNF-TrkB receptors [16,31].

While the increased levels of m-BDNF associated with cannabinoids have been previously reported, the functional relevance of these changes should be carefully interpreted [6,13]. Though in the past they were viewed as beneficial, this is an erroneous deduction [6,13]. This conclusion is derived from acute models where increases in m-BDNF protect the brain in the short-term [32]. Subsequent research has established that chronic exposure will lead to allostatic overload, maladaptive responses, and illness [33]. Additionally, a rise in BDNF, which is highly distributed in the hippocampus, increases the odds of hyperexcitability and/or excitotoxic damage by increasing long term potentiation [34]. Further confirming our postulates are human neuroimaging studies showing that marijuana use is associated with a volumetric reduction of the hippocampus [31].

By modifying BDNF, marijuana use could also induce alterations in "plasticity", which reference neuronal changes associated with the acquisition of new skills or the ability to adapt [35–37]. Emerging data have demonstrated that synaptic plasticity may also be involved in the "learning" of addictive

behaviors [16,38–40]. In vertebrate model systems, exogenous BDNF promotes cocaine-taking behavior over a range of experimental conditions, and led to increased risk of relapse [41]. Moreover, BDNF infusions induced a switch in the γ -aminobutyric acid type A receptors from inhibitory to excitatory signaling, potentiating cue-induced drug seeking [39]. These findings from different fields let us conclude that sustained increases of m-BDNF are not beneficial. Translational studies are needed to confirm whether this interaction reflects a drug-induced, synaptic plasticity phenomenon similar to the one observed in animals [16,39–41].

In addition, our data demonstrated that there are variations in BDNF responses between younger and older individuals. Since marijuana use among the younger teens in our study was generally "light", it is possible to conclude that a dose-response should exist. The steep increases in BDNF associated with escalating marijuana use also suggested this trend. This phenomenon may result from BDNF-induced neuroplasticity changes that promote drug seeking [38]. Such activity-dependent remodeling has been proposed as part of the transition from casual drug use to drug addiction in other drug fields [39–40]. Supporting these posits are also data demonstrating that injection of a TrkB antagonist in the peripheral system significantly reduces drug-dependency behaviors in animals [40–42].

In summary, marijuana the most frequent drug used by these adolescents alter the production of BDNF. Alterations were both age and dose dependent and while past users improved their levels they did not return to basal levels. Analyses confirmed that they were not a pre-condition that leads to increase substance use. Our next goal is to analyze the consequences in neuropsychological performance to better understand the neurodevelopmental trajectories of users versus non-users.

These relevant findings come with some caveats. Our sample was limited to Hispanic adolescents in South Florida. Nevertheless, our study was longitudinal and had a good sample size for a single site study. BDNF levels were measured in plasma and not in the CNS. However, both in humans and in animals, peripheral levels highly correlated with changes observed in the brain [20,43–44]. Though it is inherently difficult to establish causality in human studies, we ensured that conclusions were determined with a high level of confidence by using the correct design and laboratory methods. Animal models also provide strong support that the observed relationship between marijuana and BDNF is more than a simple association [5–6,10–11,16,29–30]. They also provide support that such alterations could be deleterious during critical developmental periods, and could contribute to, and exacerbate, addictive behavior. Although, marijuana users exhibited lower BDNF levels raising a question about their potential predicting value, additional studies should be performed in order to confirm our findings. Finally, results indicated the importance of analyzing marijuana across the different phases of

adolescence, as it can be more informative when determining long-term impact. Now policy initiatives need to ensure that legalization of marijuana to protect the rights of ailing individuals does not harm the youth who will be the future of every country. It is clear from the data amassed herein that the adolescent body registers marijuana use as a stressor. Effects of chronic use remain pervasive via heightened m-BDNF, leading to alterations in brain function and structure [6,26–29]. Such results caution against movements to broadly legalize marijuana.

Conflict of interest

The authors declare no conflict of interest.

References

- 1. World Health Organization. Substance Abuse: Facts and Figures, 2015. Available from: http://www.who.int/substance abuse/facts/cannabis/en/.
- 2. Jacobus J, Tapert SF (2014) Effects of Cannabis on the Adolescent Brain. Curr Pharm Des 20: 2186–2193.
- 3. World Drug Report 2014. United Nations publication, Sales No. E.14.XI.7. Available from: http://www.unodc.org/documents/wdr2014/World Drug Report 2014 web.pdf
- 4. Sevigny EL (2013) Is today's marijuana more potent simply because it's fresher? Drug Test Anal 5: 62–67.
- 5. D'Souza DC, Pittman B, Perry E (2009) Simen A Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology 202: 569.
- 6. Jockers-Scherübl MC, Danker-Hopfe H, Mahlberg R, et al. (2004) Brain-derived neurotrophic factor serum concentrations are increased in drug-naive schizophrenic patients with chronic cannabis abuse and multiple substance abuse. Neurosci Lett 371: 79–83.
- 7. Arseneault L, Cannon M, Poulton R, et al. (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 7374: 1212–1213.
- 8. Karege F, Perret G, Bondolfi G, et al. (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109: 143–148.
- 9. NIDA Marijuana National Institute on Drug Abuse, 2017. Available from: https://www.drugabuse.gov/publications/research-reports/marijuana.
- 10. Freedland CS, Whitlow CT, Miller MD, et al. (2002) Dose-dependent effects of $\Delta 9$ -tetrahydrocannabinol on rates of local cerebral glucose utilization in rat. Synapse 45: 134–142.

- 12. Berghuis P, Dobszay MB, Wang X, et al. (2005) Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA 102: 19115–19120.
- 13. Angelucci F, Ricci V, Spalletta G, et al. (2008) Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers. Eur Neuropsychopharmacol 18: 882–887.
- 14. Klug M, Maarten VDB (2013) An investigation into "two hit" effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice. Front Behav Neurosci 7: 149.
- 15. Boulle F, Van Den Hove DL, Jakob SB et al. (2012) Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry 17: 584.
- 16. Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5: 20–25. 17. Jacobus J, Tapert SF (2014) Effects of Cannabis on the Adolescent Brain. Curr Pharm Des 20: 2186–2193.
- 18. Weiland BJ, Thayer RE, Depue BE, et al. (2015) Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J Neurosci 35: 1505–1512.
- 19. Gilman JM, Kuster JK, Lee S, et al. (2014) Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users. J Neurosci 34: 5529–5538.
- 20. National Institute on Drug Abuse. The NIDA Quick Screen. Screening for Drug Use in General Medical Settings: Resource Guide, March, 2012. Available from: https://www.drugabuse.gov/drugsabuse/opioids
- 21. Levy S, Weiss R, Sherritt L, et al. (2014) An Electronic Screen for Triaging Adolescent Substance Use by Risk Levels. JAMA Pediatr 168: 822–828.
- 22. Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation. Neuron 39: 735–738.
- 23. Klein AB, Williamson R, Santini MA, et al. (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 14: 347–353.
- 24. Richardson MT, Ainsworth BE, Jacobs DR, et al. (2001) Validation of the Stanford 7-day recall to assess habitual physical activity. Ann Epidemiol 11: 145–153.
- 25. Koh HK, Blakey CR, Roper AY (2014) Healthy People 2020: a report card on the health of the nation. JAMA 311: 2475–2476.
- 26. Konings M, Henquet C, Maharajh HD, et al. (2008) Early exposure to cannabis and risk for psychosis in young adolescents in Trinidad. Acta Psychiatr Scand 118: 209–213.
- 27. Jessor R, Chase JA, Donovan JE (1980) Psychosocial correlates of marijuana use and problem drinking in a national sample of adolescents. Am J Public Health 6: 604–613.

- 28. Stefanis NC, Delespaul P, Henquet C, et al. (2004) Early adolescent cannabis exposure and positive and negative dimensions of psychosis. Addiction 99: 1333–1341.
- 29. Decoster J, van Os J, Kenis G, et al. (2011) Age at onset of psychotic disorder: Cannabis, BDNF Val66Met, and sex-specific models of gene–environment interaction. Am J Med Genet B Neuropsychiatr Genet 156: 363–369.
- 30. Hill AB (1965) The Environment and Disease: Association or Causation? Proc R Soc Med 58: 295–300.
- 31. Yücel M, Lorenzetti V, Suo C, et al. (2016) Hippocampal harms, protection and recovery following regular cannabis use. Transl Psychiatry 6: e710.
- 32. Shieh PB, Ghosh A (1999) Molecular mechanisms underlying activity-dependent regulation of BDNF expression. J Neurobiol 1: 127–134.
- 33. Butovsky E, Juknat A, Goncharov I, et al. (2005) In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to $\Delta 9$ -tetrahydrocannabinol. J neurochemistry 93: 802-811.
- 34. Murray PS, Holmes PV (2011) An Overview of Brain-Derived Neurotrophic Factor and Implications for Excitotoxic Vulnerability in the Hippocampus. Int J Pept 654085.
- 35. Monteggia LM, Barrot M, Powell CM, et al. (2004) Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 101: 10827–10832.
- 36. Kleim JA, Chan S, Pringle E, et al. (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9: 735–737.
- 37. Beste C, Kolev V, Yordanova J, et al. (2010) The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. J Neurosci 30: 10727–10733.
- 38. Li X, Wolf ME (2015) Multiple faces of BDNF in cocaine addiction. Behav Brain Res 279: 240–254.
- 39. Vargas-Perez H, Ting-A Kee R, Walton CH, et al. (2009) Ventral tegmental area BDNF induces an opiate-dependent-like reward state in naïve rats. Science 324:1732–1734.
- 40. Verheij MM, Vendruscolo LF, Caffino L, et al. (2016) Systemic delivery of a brain-penetrant TrkB antagonist reduces cocaine self-administration and normalizes TrkB signaling in the nucleus accumbens and prefrontal cortex. J Neurosci 36: 8149–8159.
- 41. McGinty JF, Whitfield TW, Berglind WJ (2010) Brain-derived neurotrophic factor and cocaine addiction. Brain Res 1314C: 183.
- 42. Fujimura H, Altar CA, Chen R, et al. (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87: 728–734.
- 43. Pan W, Banks WA, Fasold MB, et al. (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37: 1553–1561.

14. Radka SF, Holst PA, Fritsche M, et al. (1996) Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Re	
ina numan ana rai bui noi mouse serum detected by a sensitive and specific immunoassay. Brain Re 709: 122–301.	:3

Clusters of alcohol abstainers and dr inkers incorporating motives against drinking: a random survey of 18 to 34 year olds in four cities in four different continents

Anne W Taylor1,*, Bridgette M Bewick2, Qing Ling3, Valentina V Kirzhanova4, Paulo Alterwain5, Eleonora Dal Grande6, Graeme Tucker7 and Alfred B Makanjuola8

- 1 Population Research and Outcome Studies, Discipline of Medicine, The University of Adelaide, South Australia, Australia
 - 2 School of Medicine, University of Leeds, Leeds, United Kingdom 3 Center for Health Education, PR Ministry of Health, China
- 4 Department of Epidemiology, Federal Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Russia 5 ProHumanitas Foundation, Uruguay
- 6 Population Research and Outcome Studies, Discipline of Medicine, The University of Adelaide, South Australia, Australia
 - 7 Discipline of Medicine, The University of Adelaide, South Australia, Australia 8 Department of Behavioural Sciences, University of Ilorin Teaching Hospital, Ilorin-Nigeria

ABSTRACT

Objective: The aim of this analysis was to identify alcohol consumption clusters for adolescents and early adults according to attitudes to drinking, motivations against drinking and perceptions associated with alcohol. Method: Interviews were undertaken with people aged 18-34 years old living in four cities in different regions of the world. Multistage random sampling was consistent across the four cities (Ilorin (Nigeria), Wuhan (China), Montevideo (Uruguay) and Moscow (Russia)). The questionnaire was forward and back translated into relevant languages and face-to-face interviewing undertaken. The data were weighted to the population of each city. In total 6235 structured interviews were undertaken (1391 in Ilorin, 1600 in Montevideo, 1604 in Moscow and 1640in Wuhan). Questions regarding motivation against alcohol consumption (14 items), assessing perceptions (3 items) and attitudes to drinking in certain situations (8 items) were asked of all respondents including abstainers. Factor analysis was initially undertaken to identify highly related correlated variables. Results: Cluster analysis provided a variety of clusters (Ilorin (3 clusters), Montevideo (5), Moscow (4) and Wuhan (4)). At least one cluster in each city was dominated by abstainers and another by heavy episodic drinkers. Variations by city and alcohol consumption patterns existed in regards to variables included. Conclusion: This analysis detailed the city specific motivations against drinking alcohol, and the attitudes towards alcohol consumption. Differences highlight the influence of country/city specific culture, customs, laws, societal norms and traditions.

Keywords: alcohol; adolescent; perceptions; motivations; survey; Moscow; Montevideo; Wuhan; Ilorin

1. Introduction

In understanding lifelong patterns of alcohol consumption, the early formative period of late adolescent and early adulthood, commonly acknowledged as "transition to adulthood" is seen as a crucial period of life development [1–4]. The behaviours and patterns associated with alcohol consumption initiated during these years are important indicators for later stages of the lifespan [2,3]. Negative social and health outcomes associated with excess alcohol consumption in these formative years include increased road accidents, violence, injuries and ramifications associated with unplanned sex. There are also the possibility of long-term alcohol problems and dependency [3]. Many transformations, encompassing most components of life including academic, accommodation, relationships, and work/career options, occur during the transition to adulthood [3,5].

Multi-factorial and complex beliefs, attitudes and motivations towards alcohol are also being developed. Identifying the motivating factors that influence people to drink, limit or abstain helps to understand alcohol consumption patterns during these formative years [6–9]. Although simplistic explanations have been highlighted, the motivations for drinking and not drinking alcohol are multifaceted. Complex interactional and situational factors have been presented in the research literature [10,11]. Motivating factors for alcohol consumption primarily focus on aspects such as social influences, coping with stress, enhancement and conformity [6,8,12]. Motives for not consuming or limiting alcohol focus on harm avoidance, religion, upbringing, personal beliefs, fear of loss of control, and fear of adverse consequences [9–11,13,14]. Research highlights the important role social motives play in all facets of alcohol consumption from abstaining to heavy episodic drinking (HED), especially in the transition to adulthood age bracket of 18 to 34 years [6,8,12,15–17].

Although negative outcomes associated with alcohol consumption are researched extensively, research into reasons and motives for abstaining or limiting alcohol consumption are less common. Attitudes and beliefs have been shown to be important predictors of alcohol consumption especially in this age group [18] and are seen as important areas for promotion and public health campaigns. In most instances positive attitudes and beliefs towards alcohol are reflected in higher alcohol consumption. Alcohol outcome expectations are acknowledged as important predictors of alcohol consumption, especially in this age group, with more positive attitudes also related to higher alcohol consumption [12,19,20].

Together with motives and attitudes, socio-demographic and socio-economic variables are important indicators associated with drinking and alcohol consumption patterns [2,21–26]. Age (alcohol consumption declining with age), gender (males drinking more alcohol than females), education (with

differences by education level), work status (differences by employment status), and relationship status (with marriage/partnership and parenthood often reducing alcohol consumption rates), have been shown to be associated with patterns of alcohol consumption for those transitioning into adulthood.

The aim of this study was to use a methodologically-sound database of face-to-face interviews with randomly selected people aged 18 to 34 years in four cities in four different continents to determine similarities and differences in factors associated with alcohol consumption;. In addition, the study aimed to highlight variables amenable to policy, preventive and control initiates by defining distinct subgroups of people in terms of alcohol consumption patterns and to assess and identify similarities and differences across these international cities that will assist future public health endeavors internationally and locally. Many studies of attitudes towards, and motives for and against, alcohol consumption rely on information from current drinkers only [15,27,28]. This study incorporates these groups but also includes nondrinker—those who have never drunk alcohol or who have quit/ceased drinking. Furthermore, many studies of adolescents and emerging adults in this regard are limited to university or college populations and are often based on USA populations [27,29,30]. This study uses unique, international, community, population-wide samples, representative of adolescents and young adults aged 18 to 34 years, in the four international cities. To undertake this comparison, and to determine in greater depth the alcohol consumption patterns in the four cities, cluster and factor analysis were undertaken segmenting the population into groups that are homogeneous as possible. Factor and cluster analysis in alcohol consumption provides additional in-depth reflections on pathways to effective public health prevention and control activities.

2. Methods

2.1. Study participants and sampling strategy

Four cities were chosen pragmatically based on diversity to be involved in the study. The city of Wuhan, capital of Hubei Province in China; Moscow, the capital and the largest city of Russia; Ilorin which is the administrative capital of Kwara State, Nigeria; and Montevideo, the capital of Uruguay. For each city, multistage random sampling was undertaken and was kept consistent across the four cities. In each randomly selected household, the person with the most recent birthday, aged between 18 and 34 years, and who had lived in the city for at least six months, was eligible and was invited to participate in the study.

2.2. Ethics

In Wuhan, ethical approval was obtained from the Hubei Provincial CDC (Hubei Provincial Society for Health Promotion and Cigarette-smoking Control, HBPHPandCCS-2014-01), in Moscow from the Ethics Committee on the NRC on Addictions, in Ilorin from the Ethics Research Committee of the University of Ilorin (UERC/ASN/2014/007) and in Montevideo from the Pro Humanities Ethics Committee.

2.3. Questionnaire development

The questionnaire was forward-translated into the relevant languages (e.g. English to Chinese) and back-translated (e.g. Chinese to English) to ensure the questions were conceptually and culturally equivalent between the cities. Prior to the main survey, a pilot study of 25 to 50 interviews was conducted in each city. Data collection was interviewer-administered. The average length of interviews was 15 minutes. Response rates ranged from 48.4% in Moscow to 95.0% in Ilorin. The detailed methodology and demographic profile of respondents has previously been published [31].

2.4. Survey questions

Each respondent was asked: 1) if they had ever consumed alcohol (excluding sips), 2) how often during the past 12 months they had drunk beer, wine, spirits (e.g., vodka, gin, whisky, brandy), and any other alcohol beverage, even in small amounts, and 3) during the past 12 months, how many alcoholic drinks they had on a typical day when they drank alcohol.

Overall quantity (i.e. usual frequency of drinking by usual number of drinks consumed per drinking occasion) was calculated by multiplying the responses to the above two questions (how much and how many) with 25 or more drinks (coded as 25), 19–24 drinks (coded as 21.5), 16–18 drinks (coded as 17), 12–15 drinks (coded as 13.5), 9–11 drinks (coded as 10), 7–8 drinks (coded as 7.5), 5–6 drinks (coded as 5.5), 3–4 drinks (coded as 3.5), 2 drinks (coded as 2), 1 drink (coded as 1) and less than 1 full drink (coded as 0.5). The annual number of drinks was calculated by multiplying the responses to the question on how many days did they drink alcohol with the response from how many drinks did they have. The variables were recoded into four drinking status groups: 0 drinks = Abstainers; > 0 but less than 365 drinks/year = Light Drinkers; 365–729 drinks/year = Moderate Drinkers; 730 or more drinks/year = Heavier drinkers.

Motivation against drinking alcohol included a question on how important the following reasons were: 1) pregnancy or trying to become pregnant (females only), 2) of taste, 3) don't like the effect it has, 4) have seen bad examples of what alcohol can do, 5) previously hurt by somebody's else drinking, 6) drinking could affect work or school performance, 7) drinking is too expensive or a waste of money, 8) religious reasons, 9) brought up not to drink, 10) had an alcohol problem or afraid of becoming an alcohol, 11) too young, 12) friends and/or family members disapprove, 13) health reasons, and 14) just not interested. Possible responses were very important, important, not very important, and not at all important. The questionnaire asked these attitude questions of current drinkers, and non-drinkers (both past drinkers and lifetime abstainers) as separate questions. The two questions were combined to make one data item for each alternative. Option 1 was asked only of females and was excluded.

General attitude to alcohol use included whether respondents agreed that 1) having a drink is one of the pleasures of life, 2) having a drink with someone is a way of being friendly, 3) there is nothing good to be said about drinking. Response categories were strongly agree, agree, neither agree nor disagree, disagree, and strongly disagree. Respondents were also asked how many drinks people in certain situations should feel free to drink 1) as a mother, spending time with small children, 2) as a father, spending time with small children, 3) for a man out at a bar with fiends, 4) for a woman out at a bar with friends, 5) for a woman out with co-workers, 6) for a man out with co-workers, 7) for a man having dinner at home with spouse or partner. Responses options were: no drinks, some drinking but not enough to feel the effects (1 or 2 drinks), enough to feel the effects but not become drunk, getting drunk is sometimes alright, and getting drunk is always alright.

Demographic questions included age, sex, marital status (recoded into married/not married), highest education obtained (secondary school or less/vocational, professional, non-university/university), employment status (employed/not employed), have any children (yes/no), and currently a student (yes/no).

2.5. Analysis

To eliminate/reduce potential biases and to ensure that the results accurately reflected the population of interest, the data were weighted by age, sex and probability of selection. Specific demographic/census databases were used for each city. Details on specific weighting methodology are contained in a previous publication [31]. Data were analysed using Statistical Package for the Social Sciences (SPSS) version 20 for Windows (Chicago, IL).

As data on many individual motivational and attitudinal variables were collected, factor analysis was initially used to identify sets of variables for each city that were highly correlated and to simplify the analysis. Cluster analysis was then used to identify clusters and heterogeneity of groups of individuals. Since this analysis is purely exploratory, there was no need to randomly divide the sample into two halves in order to confirm the factor structure derived from one half of the dataset on the other half. For each city, an exploratory factor analysis (EFA) was conducted. All of the above data items were entered into the analysis. Details on specific analysis for each city are detailed below. The factor scores from the analysis for each city were saved, and used as an input into a cluster analysis, along with a derived variable regarding the drinking status of the respondent. Also included in the cluster analysis were the demographic data detailed previously. Hierarchical agglomerative clustering was employed using the squared Euclidean distance measure and Ward's method to form the clusters.

3. Results

In total, n=6235 interviews were undertaken (1391 in Ilorin, 1600 in Montevideo, 1604 in Moscow and 1640 in Wuhan). Missing and "don't know" responses were excluded from all analyses, with the final numbers included being 1144 for Ilorin, 981 for Montevideo, 1526 for Moscow, and 1150 for Wuhan. A demographic profile of respondents for each city is presented in Supplementary The proportion having ever consumed alcohol was 33.3% (95% CI 30.9–35.9) of respondents from Ilorin, 53.4% (95% CI 51.0–55.8) for Wuhan, 86.1% (95% CI 84.3–87.7) for Moscow, and 96.4% (95% CI 95.3–97.2) for Montevideo (Table 1).

3.1. Factor analysis by city

Ilorin, Nigeria

Various extraction and rotation options were tried, with the best solution being produced by principal components extraction with an oblique rotation. When all of the items were entered into an EFA, the questions regarding general attitudes and situations formed their own factors and did not add anything to the understanding of the data. When these were removed, and the EFA considered only motivations against drinking, two factors emerged. The first factor was a motivation because of intrinsic factors (e.g. dislike for the effects of alcohol). The second factor related to motivation because of extrinsic pressures (e.g. social pressure against drinking) (Supplementary Table 2).

Montevideo, Uruguay

The approach to this analysis was the same as the analysis previously described for Ilorin. The final EFA considered only motivations against drinking where two factors emerged. The first factor was motivation by intrinsic personal pressures (e.g. about social pressure against drinking). The second factor was motivated by fear of effects (e.g. a dislike for the effects of alcohol) (Supplementary Table 3).

Moscow. Russia

When all items were entered into an EFA using maximum likelihood extraction and oblimin rotation (oblique rotation allowing for correlated factors), the questions regarding general attitudes, perceptions of situations, and motivations against drinking formed their own individual factors. Although this seems like an obvious result, it did not occur in the two previous factor analyses. The first factor was perceptions of drinking limits in different situations (e.g. for a woman out at a bar with friends), the second factor was motivation by fear (e.g. have been hurt by someone else's drinking), and the third factor was positive justification/perception of drinking (e.g. drinking is one of the pleasures of life) (Supplementary Table 4).

Wuhan, China

When all items were entered into an EFA, principal axis factoring produced the best extraction results, which combined with oblimin rotation produced a two factor solution where the questions regarding motivations against drinking and general attitudes/perceptions of situations formed factors. The first factor was motivation by both intrinsic and extrinsic pressures against drinking (e.g. I have had alcohol problems/are afraid of being an alcohol; my friends and/or family disapprove of me drinking). The second factor was perceptions of drinking limits in different situations (e.g. for a woman having dinner at home with her spouse or partner) and a positive justification/attitude towards drinking (e.g. having a drink with someone is a way of being friendly) (Supplementary Table 5).

3.2. Cluster analysis by city

Ilorin, Nigeria

When cluster analysis was undertaken, the dendogram and the agglomeration schedule both supported a three cluster solution encompassing 26.6%, 33.3% and 40.0% of the sample. Those clusters are detailed

in Table 1. Members of Cluster 1 were more likely to be abstainers, former drinkers, older, university educated, married, employed females with children. Members of Cluster 2 were more likely to be younger than Cluster 1 and older then Cluster 3 members, unmarried with no children, who were current drinkers or HEDs. Members of Cluster 3 were all students, more likely to be young, who do not drink, are unmarried and do not have children. They were students, and they were therefore also less likely to be working. Differences by intrinsic and extrinsic pressures were apparent across the Clusters.

Montevideo, Uruguay

The dendogram and the agglomeration schedule both supported a five cluster solution encompassing 15.5%, 14.3%, 36.3%, 22.7% and 11.2% of the sample. These clusters are detailed in Table 2. Cluster 1 were more likely to be current alcohol drinkers or HED, younger than the other Clusters, unmarried, not employed with no children. Cluster 2 were more likely to be current drinkers, university educated, employed, females without children, and also more likely to be students. Cluster 3 were more likely to be older than the other Clusters, married, employed with children and are current drinkers or HEDs, with a lower level of education than average. They were also less likely to be students. Cluster 4 are more likely to be employed, males with no children who are HEDs. Cluster 5 were more likely to be abstainers or past drinkers with 94.7% of this cluster not drinking, and those that did were light drinkers. They were more likely to have a low level of education. Differences by intrinsic and extrinsic pressures and fears of the effects of alcohol were apparent across the Clusters.

Moscow, Russia

A four cluster solution was indicated by the dendogram and agglomeration schedule encompassing 23.0%, 25.2%, 36.1% and 15.6% of the sample in this case. The clusters are detailed in Table 3. Cluster 1 were more likely to be older, current drinkers or HEDs, married with children, employed, and well educated. Cluster 2 members were younger than other Clusters, unmarried, less likely to have children, less likely to be employed, or have a degree qualification. They were more likely to be lifetime abstainers although all drinker types were represented in this group. Cluster 3 were more likely to be employed, well educated, unmarried with no children who were current drinkers or HEDs. Cluster 4 are more likely to be females and less likely to be students. They were abstainers or former drinkers. Differences in perception of acceptable drinking limits, justification for drinking and motivation against drinking were apparent across the Clusters.

Wuhan, China

Hierarchical agglomerative clustering was employed using the squared Euclidean distance measure and Ward's method to form the clusters. This analysis did not result in clusters that discriminated drinking behaviour or attitudes. A number of different alternative extraction methods and factor solutions were tried, including reducing the factor analysis to just motivations against drinking as in Ilorin and Montevideo, but all suffered from the same problem. Eventually marital status, education status and number of children were omitted and a four cluster solution of acceptable quality was produced. The four cluster solution encompassed 36.3%, 33.2%, 21.6% and 8.8% of the sample. The clusters are detailed in Table 4. Cluster 1 were current drinkers who were employed, highly educated, and not likely to be a student. Cluster 2 were mostly non-drinkers (lifetime abstainers and former drinkers), more likely to be employed, not likely to be a student with high levels of education. Cluster 3 reflected a variety of levels of alcohol consumption patterns with the majority being current drinkers or lifetime abstainers. They were also more likely not to be married, not employed (100% students) and less likely to have children. Cluster 4 were a mixture of current drinkers and lifetime abstainers who were more likely to be not employed, non-university educated and not students. Differences in motivation against drinking and acceptable levels of drinking were apparent especially in Cluster 2.

4. Discussion

The results of this analysis from a random-population survey of 18 to 34 year olds in four distinct cities of the world highlighted the complexity associated with determining patterns of alcohol consumption in this important age group. Although results varied considerably across all four cities, some similarities between the cities in terms of alcohol consumption were apparent. Two of the three clusters for Ilorin were dominated by alcohol abstainers. This reflects the relatively low overall prevalence rates of alcohol consumption in Nigeria [32–35], although among those who do drink alcohol, large amounts are regularly consumed [34–37]. The abstainer cluster, predominately students, consisted of younger people whose extrinsic motivations against drinking was dominated by religious reasons or because they were brought up not to drink alcohol. Internationally, religion and the influence of upbringing have been shown to have important considerations for abstainers and low alcohol drinkers [11,14,23,30]. In Nigeria, the practice of Muslim religion is widespread [14,32,36] and our previous research indicated that the Muslim respondents were significantly less likely to be current drinkers [31]. In all four cities at least one of the final clusters was predominately abstainers and ex-drinkers, but religion as a motive for not consuming alcohol was only prominent in Ilorin. Internationally religious convictions have been shown to be stronger in females [12] although in our analyses the Ilorin cluster that rated religion high was not dominated by females.

Table 1. Results of cluster anal	lysis for	Ilorin-Nigeria.
---	-----------	-----------------

	·		,	·	,		·		n,					
Ilorin, Nigeria	n	%	AR	n	%	AR	n	%	AR	N	%	X2	Df	P value
Drinking status														
Lifetime abstainer	155	59.4	1.5	153	46.8	-3.8	235	59.9	2.3	543	55.4	24.336	6	< 0.001
Former drinker	41	15.7	-0.7	70	21.4	2.6	56	14.3	-1.9	167	17.0			
Current drinker	53	20.3	-1.4	82	25.1	0.9	94	24.0	0.4	229	23.4			
Heavy episodic drinker	12	4.6	0.4	22	6.7	2.8	7	1.8	-3.1	41	4.2			
Age (mean years)	30.05			24.74			22.29							
Gender														
Male	68	26.1	-8.3	195	59.6	5.1	209	53.3	2.6	472	48.2	72.503	2	< 0.001
Marital Status														
Married	259	99.2	30.3	10	3.1	-12.1	1	0.3	-15.6	270	27.5	917.453	2	< 0.001
Employment Status														
Employed	199	76.0	12.7	166	50.8	3.6	55	14.0	-14.9	420	42.8	258.616	2	< 0.001
Highest level of education														
Secondary school or less	152	58.2	-0.1	215	65.7	3.2	207	52.8	-3	574	58.6	162.965	4	< 0.001
Vocational/professional/Non-university	37	14.2	-5.4	50	15.3	-5.8	177	45.2	10.5	264	26.9			
tertiary education														
University degree or higher	72	27.6	7	62	19.0	2.8	8	2.0	-9	142	14.5			
Children?														
Yes	248	95.0	25.9	40	12.2	-9.1	20	5.1	-14.5	308	31.4	672.53	2	< 0.001
Student?														
Yes	3	1.1	-15.3	6	1.8	-17.6	392	100.0	30.7	401	40.9	943.37	2	< 0.001
Factor 1 – Intrinsic pressures (mean) *	0.34↓			0.06			0.02							
Factor 2 - Extrinsic pressures (mean)	0.26			0.34			-0.09	1						

Note: The weighting of the data can lead to rounding discrepancies and totals not adding. (a) Uses Harmonic Mean Sample Size= 318.013; the group sizes are unequal. The harmonic mean of the group sizes is used; Type I error levels are not guaranteed. ↓ Less important ↑ More important.

Table 2. Results of cluster analysis for Montevideo-Uruguay.

	Cluste	er 1		Cluste	er 2		Cluste	er 3		Cluste	er 4		Cluste	er 5							
	(n=23	7, 15.59	%)	(n=21)	7, 14.39	6)	(n= 55	(n= 554, 36.3%)		(n=34	7, 22.7%)	(n=17	0, 11.29	6)	Total					
	(Your	g drink	ers)	(Stude	ent drink	ers)	(Older	(Older married HED)			(Male HED)			(Abstainers)			(n = 1525)				
	n	%	AR	n	%	AR	n	%	AR	n	%	AR	n	%	AR	n	%	X2	Df	P value	
Drinking status																					
Lifetime abstainer	0	0.0	-2.8	0	0.0	-2.7	2	0.4	-4.3	0	0.0	-3.6	40	23.5	17.6	42	2.8	1400.6	16	< 0.001#	
Former drinker	0	0.0	-5.1	4	1.8	-3.8	3	0.5	-8.4	1	0.3	-6.2	121	71.2	31.2	129	8.5				
Very light drinker	7	3.0	0	5	2.3	-0.6	17	3.1	0.2	7	2.0	-1.2	9	5.3	1.9	45	3.0				
Current drinker	165	69.6	1.2	187	86.2	6.7	422	76.2	6.3	234	67.4	0.6	0	0.0	-19	1008	66.1				
Heavy episodic drinker	65	27.4	3.2	21	9.7	-4	110	19.9	0.1	105	30.3	5.6	0	0.0	-6.9	301	19.7				
Age (mean years) Gender	21.64			25.60			28.12			25.41			25.55								
Male	110	46.2	-1.1	3	1.4	-15.3	243	43.9	-3.3	330	95.1	19.3	69	40.6	-2.5	755	49.5	503.12	4	< 0.001	
Marital Status		10.2						20.0		-			-	20.0	2.0		10.0		-	101001	
Married	7	3.0	-15.0	104	47.7	0	420	75.8	16.6	103	29.7	-7.6	93	54.7	2.0	727	47.6	414.26	4		
Employment																					
Employed	0	0.0	-24.7	196	90.3	7.5	404	72.9	2.8	341	98.6	13.7	102	60.0	-2.5	1043	68.4	718.08	4		
Highest level of education																					
Secondary school or less	122	51.5	-2.1	56	25.7	-10.3	398	71.8	8.5	184	53.2	-1.9	118	69.0	3.2	878	57.5	243.48	8	< 0.001	
Vocational/prof/Non-uni	102	43.0	3.4	94	43.1	3.2	130	23.5	-6.3	138	39.9	2.8	48	28.1	-1.6	512	33.6				
University degree	13	5.5	-2	68	31.2	12.5	26	4.7	-4.4	24	6.9	-1.5	5	2.9	-2.9	136	8.9				
Children?																					
Yes	21	8.9	-11.5	36	16.5	-8.5	487	87.9	26.8	0	0.0	-18.4	111	65.3	6.3	655	42.9	927.55	4	< 0.001	
Student?																					
Yes	158	66.7	11.1	171	78.4	14.5	27	4.9	-18.7	136	39.2	1.8	43	25.3	-2.8	535	35.1	515.63	4	< 0.001	
Factor 1-Intrinsic pressure	-0.03			0.13			0.18			-0.02			-0.37	1							
(mean) a																					
Factor 2-Fear of effects (mean)	0.11			-0.24	1		0.07			0.14			-0.29	1							

Note: The weighting of the data can lead to rounding discrepancies and totals not adding. (a) Uses Harmonic Mean Sample Size =257.986; the group sizes are unequal. The harmonic mean of the group sizes is used; Type I error levels are not guaranteed. #1 cell < 5. ↓ Less important ↑ More important.

Table 3. Results of cluster analysis for Moscow-Russia.

	Cluster	1		Cluster	2		Cluster	3		Cluster	4		Total					
	(n=245, 23.0%) (Older drinkers)			(n=269, 25.2%) (Students)			(n=385, 36.1%) (Current drinkers)			(n=167, 15.6%) (Abstainers, females)			(n= 10	066)				
	n	%	AR	n	%	AR	n	%	AR	N	%	AR	n	%	X2	Df	P value	
Drinking status																		
Lifetime abstainer	0	0.0	-6.2	64	23.8	7.9	0	0.0	-8.6	52	31.3	9.2	116	10.9	528.728	12	< 0.001	Cells <
Former drinker	1	0.4	-5.4	21	7.8	-0.9	5	1.3	-6.7	71	42.8	16.3	98	9.2				
Very light drinker	0	0.0	-0.5	1	0.4	1.7	0	0.0	-0.8	0	0.0	-0.4	1	0.1				
Current drinker	2128	86.5	6.0	173	64.3	-2.9	334	86.8	8.4	40	24.1	-14.6	759	71.3				
Heavy episodic drinker	32	13.1	2.9	10	3.7	-3.3	46	11.9	3.0	3	1.8	-3.4	91	8.5				
Age (mean years)	30.94			20.61			26.54			28.65								
Gender																		
Male	132	53.9	1.3	131	48.7	0.3	205	53.2	3.3	43	25.7	-6.2	511	47.9	40.820	3	< 0.001	
Marital Status																		
Married	207	84.5	16.4	11	4.1	-13.7	85	22.1	-8.7	118	70.7	9.0	421	39.5	465.430	3	< 0.001	
Employment																		
Employed	244	99.6	11.0	57	21.2	-21.4	370	96.1	13.2	95	57.2	-4.6	766	71.9	564.995	3	< 0.001	
Highest level of education																		
Secondary school or less	11	4.5	-5.4	103	38.4	12.1	27	7.0	-5.7	23	13.9	-0.6	164	15.4	269.003	6	< 0.001	
Vocational/prof/Non-uni	105	42.9	-0.3	155	57.8	5.4	143	37.1	-1.8	62	37.3	-1.8	435	40.9				
University degree or higher	129	52.7	4.3	10	3.7	-14.3	215	55.8	7.5	81	48.8	2.3	435	40.9				
Children?																		
Yes	245	99.6	25.3	7	2.6	-12.3	3	0.8	-16.8	97	58.4	7.6	352	33.0	834.912	3	< 0.001	
Student?																		
Yes	1	0.4	-10.5	269	100.0	31.7	0	0.0	-14.7	11	6.6	-6.3	281	26.4	1007.935	3	< 0.001	
Factor 1 – Situations (mean) a	0.28↑			-0.07			0.33↑			-0.58↓								
Factor 2 - Motivation by fear	$0.17 \downarrow$			-0.19↑			0.20↓			-0.31↑								
(mean)																		
Factor 3 – Positive justification	-0.37↑			0.18			-0.45			0.63↓								
(mean)																		

Table 4. Cluster analysis for Wuhan-China.

	Cluste	r 1		Cluster	2		Cluster	r 3		Cluste	r 4						
	(n=412, 36.3%) (Drinkers)			(n=376, 33.2%) (Abstainers)			(n=245, 21.6%) (Abstainers/former)			(n=100), 8.8%)		Total				
										(Unemployed)			(n = 1133)				
	n	%	AR	n	%	AR	n	%	AR	n	%	AR	n	%	X2	Df	P value
Drinking status																	
Lifetime abstainer	36	8.8	-17.6	324	85.9	20.6	84	34.1	-3.2	45	44.6	0.3	489	43.1	667.791	12	< 0.001
Former drinker	5	1.2	-5.9	48	12.7	5.1	25	10.2	2.0	4	4.0	-1.3	82	7.2			
Very light drinker	10	2.4	-0.7	4	1.1	-2.6	18	7.3	4.7	1	1.0	-1.2	33	2.9			
Current drinker	321	78.1	18.2	1	0.3	-20.3	113	45.9	1.2	48	47.5	1.1	483	42.6			
Heavy episodic drinker	39	9.5	6.6	0	0.0	-5.0	6	2.4	-1.6	3	3.0	-0.7	48	4.2			
Age (mean years)	26.13			26.30			20.41			26.67							
Gender																	
Male	247	60.0	4.5	185	49.2	-0.9	121	49.4	-0.6	27	27.0	-5.1	580	51.2	36.990	3	< 0.001
Marital Status																	
Married	199	48.7	2.7	212	56.4	6.3	8	3.3	-14.3	70	70.0	5.6	489	43.3	220.003	3	0.008
Employment																	
Employed	412	100.0	16.3	376	100.0	15.2	15	6.1	-25.2	0	0	-16.3	803	70.9	1064.784	3	0.014
Highest level of education																	
Secondary school or less	37	9.0	1.2	34	9.0	1.1	0	0.0	-5.1	17	16.8	3.6	88	7.8	76.331	6	0.015
Vocational/professional/Non-university	238	58.2	3.0	196	52.1	-0.0	99	40.4	-4.2	59	58.4	1.3	592	52.3			
University degree or higher	134	32.8	-3.7	146	38.8	-0.5	146	59.6	7.1	25	25.8	-3.3	451	39.9			
Children?																	
Yes	147	36.2	0.8	163	44.1	4.6	11	4.7	-10.9	65	65.0	6.7	386	34.8	147.998	3	0.006
Student?																	
Yes	0	0.0	-13.4	0	0.0	-12.5	245	100.0	33.7	0	0.0	-5.5	245	21.6	1133.000	3	0.005
Factor 1 – Intrinsic/Extrinsic (mean) (a)	0.25			-0.29↑			0.14			0.05							
Factor 2 –Situations (mean)	-0.451			0.36↓			0.12			0.13							

Note: The weighting of the data can lead to rounding discrepancies and totals not adding. (a) Uses Harmonic Mean Sample Size= 208.716; the group sizes are unequal. The harmonic mean of the group sizes is used; Type I error levels are not guaranteed. ↓ Less important ↑ More important.

The other abstainers and former drinker cluster found in the Ilorin sample was dominated by married females. Less important for this cluster was motivation by intrinsic and extrinsic pressures such as disliking the effect of alcohol. This again reflects the dominant culture in Nigeria where females not consuming alcohol is the societal norm [32,35,37,38], although this presumption is being challenged in

recent times [38]. The third cluster for Ilorin was dominated by married men who were heavy drinkers again reflecting the dominant alcohol culture found in Nigeria [32,35,37–39].

In the Montevideo analyses, five clusters were apparent. As a reflection of the higher alcohol consumption prevalence rates found in Montevideo [17,25], only one cluster featured abstainers or former drinkers and only represented 11.2% of the total Montevideo sample. Although the mean age of this cluster (26 years) was not the lowest, this cluster's main motivation against drinking was because they were too young, because friends and family disapprove of their drinking and because they were brought up not to drink. The minimum legal age to purchase alcohol in Uruguay is 18 years, although there is no law related to age of consumption of alcohol, so the young age reflection must be self-perceived. Also included in this cluster, and which may explain the inclusion of the first factor, was the motivation against alcohol because of fear which included having seen bad examples of what alcohol can do, and having been hurt by somebody else's drinking. It should be noted that the majority in this cluster were ex-drinkers rather than abstainers per se, perhaps indicating previous bad experiences. Other research has shown the prominence of 'being brought up not to drink' as an important factor for abstainers [14]. Of note, the family/friends influence was more highly rated in the Montevideo factors than in other cities. Family and/or friend disapproval, in particular, is a common reason for limiting alcohol consumption, especially among younger people [11,13,17].

The cluster patterns for Moscow consisted of one cluster where abstainers and former drinkers represented over 70% of the cluster group. Again, based on the high overall alcohol consumption rates [25,40,41], this cluster was smaller in number of respondents and was dominated by females. Higher rates of alcohol consumption for males is frequently acknowledged in Russia [39,42]. Also important in this cluster was the motivation against alcohol consumption because of fear such as they had been hurt by somebody else's drinking, because of health reasons and because they had seen bad examples. This high rating of health reasons (whether current, perceived or possibly into the future) is unusual in this age group as the limiting of alcohol consumption because of health reasons are usually associated with older persons [13]. This could be the result of intensive alcohol reduction programs implemented in recent years by public health agencies that has resulted in changes in alcohol use [43,44]. It has been suggested that alcohol campaigns aimed at limiting consumption should concentrate on broader issues than health outcomes, instead incorporating social and community issues such as crime rates, driving accidents, and economics [6]. Not surprising for Moscow was the domination of HEDs in each of the remaining two clusters. In both of these clusters the positive justification represented by a belief that having a drink is one of the pleasures of life was more common in line with previous studies [19,45]. This factor was less likely to be present in the abstainer cluster which again has previously been reported [19,45].

It has been argued that alcohol consumption patterns in China do not always follow patterns of Western countries [28,46]. Our results indicate this to be true with both initially the factor analysis, and then the cluster analysis, producing different patterns and results in Wuhan compared to the other three cities. While China has a long history of alcohol consumption [46], overall prevalence rates have been relatively low until recent times, especially for females. China's frequency of drinking alcohol and amount consumed at a population level is now approaching other countries levels [25,46–48]. The transition is more notable in the age group of focus in this study [46]. Unsurprisingly, based on the lower overall alcohol prevalence rate, three of the four final clusters had higher rates of abstainers and former drinkers. The clusters consisted of two distinct groups with opposite levels of importance for the factors included. All the clusters had high levels of education. For the largest abstaining group (Cluster 2), the intrinsic/extrinsic factor associated with the motivation against alcohol 'because they had alcohol problems' or 'were afraid they would become an alcoholic', was stronger for this cluster.

Although it would be expected that gender would play an important part in these results, separate clusters dominated by males and females were only found in two of the Montevideo clusters, one cluster for Wuhan and none for the other cities. In this instance the Montevideo male dominant cluster tended to be unmarried, employed males who were heavy drinkers and in the separate cluster females were more likely to be educated, employed and current drinkers. In the final Wuhan cluster, females represented 73% of the sample. Other important descriptive variables included, not being employed and not being students, indicating perhaps a stay-at-home mother (with over 65% having children). While different patterns of alcohol consumption have been historically important, as female's alcohol consumption rates increasingly head towards convergence with males, especially in this age group, it is expected that different patterns would become less prominent [24], although this merging of the female and male alcohol overall consumption rate is contested in the literature [21]. Of note, Loose and Acier [6] report lack of differences in motives for each sex in their French study of students as did Mezquita et al. [16] in their study of Spanish students.

Weaknesses associated with this study include the fact that these analyses are limited to cross sectional studies with no cause or effect or long-term trends implied. We also did not take into account the economic and development status of each city/country, nor investigate relationships with other risk factors (such as smokers and drug intake) which are factors that are an important consideration for the age group we studied [2]. In addition, limiting our alcohol consumption measures to one measure (frequency/quantity) rather than multiple dimensions could be seen as a weakness. Furthermore, the lack of details on personality traits, an important consideration when assessing alcohol consumption patterns, is acknowledged [16,29]. It is also acknowledged that alcohol consumption patterns within a community

are a reflection of that location's political structure, laws and regulations, societal norms and traditions, dominance of anti-alcohol religious convictions, average income levels and economic standings, as well as motives, behaviors and beliefs. Many of these aspects were not addressed in this study. Additionally, it is generally accepted, in theory, that attitudes determine behaviours. Theory also has it that in some circumstances behaviours determine attitudes, (e.g. this is partly what smoking bans hope to achieve). Either way, the theory of factorial causation dictates that attitudes and behaviours should not be analysed in the same exploratory factor analysis (EFA), which we did undertake.

This study, in its rigorous attention to pre-survey detail and cultural differences, has endeavored to overcome any major shortcomings. The strengths of this study include the diversity of the cities studied, the focus on the limited age range, the relatively large sample size, high response rates and the use of probability-based sampling methodology (stratified, clustered, systematic) in each city. In addition, often alcohol consumption is not recorded in many official statistics and this self-report methodology has been able to incorporate all levels of consumption. An additional strength of the study is the inclusion of both abstainers and ex-drinkers, a group often omitted from these types of analyses. Weighting of the data allowed for the estimates to be representative of the general population. A further strength was the use, as far as possible, of comparable measures of alcohol consumption and demographic variables and similar methodological aspects such as sample selection, protocols, and administration. This included city specific interviewing. The involvement of local communities and language specific interviewing with translation and back translation of all questionnaires are also strengths of the study. The use of predesigned epidemiological-sound methodology, rather than post-data collection manipulation of already collected data, is seen as an additional strength.

This research, addressing the need for more geographical based, methodologically-comparable studies especially in low and middle income countries [3,48], has gone someway in satisfying Bloomfield et al's [49] call for descriptive epidemiological alcohol-related research across multiple regions of the world and calls for more studies on motivation associated with alcohol consumption and abstaining [10,13]. Future research could address the effects of specific alcohol related policies, guidelines, legislation and economic development in each of these cities. In addition, the role and pattern of social interactions has been highlighted as an important component associated with alcohol consumption in this age group and further research into this aspect of life would be beneficial.

In conclusion, specific groupings and characteristics regarding attitudes to, and motives against, alcohol consumption are likely to exist. This study identified up to five groups for each city examined, which provides greater understanding of the patterns of alcohol consumption in these communities and

increased understanding of these key motivations for drinking alcohol. Knowledge and awareness of these patterns highlights opportunities to provide more targeted preventative education and communicative strategies. This research highlights how motivations and behaviours associated with alcohol consumption are closely connected to specific countries and cultures and the importance of socio-demographic indicators.

Acknowledgements

This study, including travel and reasonable expenses, was funded by International Alliance for Responsible Drinking (IARD), a not-for-profit organization supported by major producers by alcohol beverages (www.iard.org). The funders had no role in the analysis, data interpretation and writing of this manuscript. The corresponding author was the only one to have full access to all the data and had final responsibility for the decision to submit for publication. The work product, findings, viewpoints, and conclusions presented here are solely those of the named authors and do not necessarily represent those of IARD or its sponsoring companies.

Conflict of interest

AWT is currently a recipient of a research grant provided by the International Alliance for Responsible Drinking (IARD).

BMB, as keynote speaker/expert adviser, has received reimbursement of travel expenses and/or time from Anheuser-Busch, Noctis, and the International Centre for Alcohol Policies. BMB has been in receipt of a research grant provided by the European Research Advisory Board (ERAB) and is currently a recipient of a research grant provided by the International Alliance for Responsible Drinking (IARD). BMB has received reimbursement of reasonable expenses incurred as a member of the independent Research Advisory Board for the European Foundation for Alcohol Research. These projects/activities did not influence the current work.

The other authors declare that they have no competing interest other than those mentioned in the acknowledgment section.

References

- 1. Arnett JJ (2005) The development context of substance use in emerging adulthood. J Drug 2: 235–254.
- 2. Daw J, Margolis R, Wright L (2017) Emerging adulthood, emergent health lifestyles: Sociodemographic determinants of trajectories of smoking, binge drinking, obesity and sedentary behavior. J Health Soc Behav 58: 181–197.
- 3. Hall WD, Patton G, Stockings, et al. (2016) Why young people's substance use matters for global health. Lancet Psychiatry 3:265-279.
- 4. Costanzo PR, Malone PS, Belsky D, et al. (2007) Longitudinal differences in alcohol use in early adulthood. J Stud Alcohol Drugs 68: 727–737.
- 5. Schulenberg JE, Maggs JL (2002) A developmental perspective on alcohol use and heavy drinking during adolescence and the transition to young adulthood. J Stud Alcohol 14: 54–70.
- 6. Loose T, Acier D (2017) Drinking motives and alcohol consumption behaviors among French people. Addict Behav 72: 120–125.
- 7. Kuntsche E, Knibbe R, Gmel G, et al. (2005) Why do young people drink? A review of motives. Clin Psychol Rev 25: 841–861.
- 8. Kuntsche E, Gabhainn SN, Roberts C, et al. (2014) Drinking motives and links to alchol use in 13 European countries. J Stud Alcohol Drugs 75: 428–437.
- 9. Anderson KG, Briggs KEL, White HR (2013) Motives to drink or not to drink: Longitudinal relations among personality, motives and alcohol use across adolescence and early adulthood. Alcohol Clin Exp Res 37: 860–867.
- 10. Epler AJ, Sher KJ, Piasecki TM (2009) Reasons for abstaining or limiting drinking: a developmental perspective. Psychol Addict Behav 23: 428–442.
- 11. Stritzke WGK, Butt JCM (2001) Motives for not drinking alcohol among Australian adolescents: Development and initial validation of a five-factor scale. Addict Behav 26:633–649.
- 12. Anderson KG, Grunwald I, Bekman N, et al. (2011) To drink or not to drink: Motives and expectancies for use and non-use in adolescence. Addict Behav 36: 972–979.
- 13. Davies EL, Conroy D, Winstock AR, et al. (2017) Motivations for reducing alcohol consumption: An international survey exploring experiences that may lead to a change in drinking habits. Addict Behav 75: 40–46.
- 14. Bernards S, Graham K, Kuendig H, et al. (2009) 'I have no interest in drinking': a cross-national comparison of reasons why men and women abstain from alcohol use. Addiction 104: 1658–1668.
- 15. Abbey A, Smith MJ, Scott RO (1993) The relationship between reasons for drinking alcohol and alcohol consumption: An interactional approach. Addict Behav 18: 659–670.
- 16. Mezquita L, Stewart SH, Ibanez MI, et al. (2011) Drinking motives in clinical and general populations. Eur Addict Res 17: 250–261.

- 17. Astudillo M, Connor J, Roiblatt RE, et al. (2013) Influence from friends to drink more or less: A cross-national comparison. Addict Behav 38: 2675–2683.
- 18. Patrick ME, Wray-Lake L, Finlay AK, et al. (2010) The long arm of experiences: adolescent alcohol expectancies predict adult alcohol use. Alcohol Alcohol 45: 17–24.
- 19. Cable N, Sacker A (2008) Typologies of Alcohol consumption in adolescence predictors and adult outcomes. Alcohol Alcohol 43: 81–90.
- 20. Blume AW, Guttu BL (2015) Categories of alcohol outcome expectancies and their relationships to alcohol related consequences. Addict Behav Rep 1: 64–67.
- 21. Christie-Mizell CA, Peralta RL (2009) The gender gap in alcohol consumption during late adolescence and young adulthood: gendered attitudes and adult roles. J Health Soc Behav 50: 410–426.
- 22. Dantzer C, Wardle J, Fuller R, et al. (2006) International study of heavy drinking: attitudes and sociodemographic factors in University students. J Am Coll Health 55: 83–90.
- 23. Dietler M (2006) Alcohol: Anthropological/Archaeological perspectives. Annu Rev Anthropology 35: 229–249.
- 24. Erol A, Karpyak VM (2015) Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research. Drug Alcohol Depend 156: 1–13.
- 25. World Health Organization (WHO). Global status report on alcohol and health. 2014 WHO ISBN 9879240692763.
- 26. Kuntsche E, Knibbe R, Gmel G, et al. (2006) Who drinks and why? A review of socio-demographic, personality, and contextual issues behind the drinking motives in young people. Addict Behav 31: 1844–1857.
- 27. Jones KA, Chryssanthakis A, Groom MJ (2014) Impulsivity and drinking motives predict problem behaviours relating to alcohol use in University students. Addict Behav 39: 89–296.
- 28. Cheng HG, Phillips MR, Zhang Y, et al. (2017) Relationships of drinking motives with alcohol consumption and alcohol-related problems identified in a representative community-based study from Ningxia, China. Addict Behav 74: 156–161.
- 29. Loxton NJ, Bunker RJ, Dingle GA, et al. (2015) Drinking not thinking: A prospective study of personality traits and drinking motives on alcohol consumption across the first year of university. Personal Individ Differ 79: 134–139.
- 30. Galen LW, Rogers WM (2004) Religiosity, alcohol expectancies, drinking motives and their interaction in the prediction of drinking among college students. J Stud Alcohol 65: 469–476.
- 31. Taylor AW, Bewick BM, Makanjuola AB, et al. (2017) Context and culture associated with alcohol use amongst youth: a cross-country population based survey. PLoS One 12: e0187812.
- 32. Clausen T, Rossow I, Naidoo N, et al. (2009) Diverse alcohol drinking patterns in 20 African countries. Addit 104: 1147–1154.

- 33. Ibanga AJ, Adetula AV, Dagona Z, et al. (2005) The Context of alcohol consumption in Nigeria (Chapter 7) in Alcohol, Gender and Drinking problems. WHO.
- 34. Joosten J, Knibbe RA, Derickx M (2009) Criticism of drinking as informal social control: a study in 18 countries. Contemp Drug Probl 36: 85–109.
- 35. Esan O, Makanjuola V, Oladeji B, et al. (2013) Determinants of transition across the spectrum of alcohol use and misuse in Nigeria. Alcohol 47: 249–255.
- 36. Dumbili EW (2013) Patterns and Determinants of alcohol use among Nigerian University students: An Overview of recent developments. Afri J Drug Alcohol Stud 12: 29–51.
- 37. Dumbili E (2013) Changing patterns of alcohol consumption in Nigeria: An exploration of responsible factors and consequences. Med Soc Online 7: 2033–2013.
- 38. Dumbili EW (2015) 'What a man can do, a woman can do better': Gendered alcohol consumption and (de) construction of social identity among young Nigerians. BMC Public Health 15: 167.
- 39. Ibanga AKJ, Adetula VAO, Dagona ZK (2009) Social pressures to drink or drink a little more: the Nigerian experience. Contemp Drug Probl 36: 111–136.
- 40. Ferreira MP, Willoughby D (2008) Alcohol consumption: the good, the bad, and the indifferent. Appl Physiol Nutr Metab 33: 12–20.
- 41. Van Gundy K (2002) Gender and intergenerational transmission of alcohol use patterns: an analysis of adult children in Moscow. Subst Use Misuse 37: 65–87.
- 42. Keenan K, Saburova L, Bobrova N, et al. (2015) Social factors influencing Russian male alcohol use over the life course: a qualitative study investigating age based social norms, masculinity and workplace context. Plos One 10: e0142993.
- 43. Khaltourina D, Korotayev A (2015) Effects of Specific Alcohol Control Policy Measures on Alcohol-Related Mortality in Russia from 1998 to 2013. Alcohol Alcohol 50: 592.
- 44. Transchel K (2010) "Opinion: Why a \$3 bottle of vodka won't cut it". Global Post. Retrieved July 27, 2018. https://www.pri.org/stories/2010-01-18/opinion-why-3-bottle-vodka-wont-cut-it.
- 45. Slater MD, Basil MD, Maibach EW (1999) A cluster analysis of alcohol-related attitudes and behaviours in the general population. J Stud Alcohol 60: 667–674.
- 46. Cochrane J, Chen H, Conigrave KM, et al. (2003) Alcohol use in China. Alcohol Alcohol 38: 537–542.
- 47. Jiafang Z, Jiachun W, Yunxia L, et al. (2004) Alcohol abuse in a metropolitan city in China: a study of the prevalence and risk factors. Addict 99: 1103–1110.
- 48. Degenhardt L, Stockings E, Patton G, et al. (2016) The increasing global health priority of substance use in young people. The Lancet 3:251-264.
- 49. Bloomfield K, Stockwell T, Gmel G, et al. (2003) International comparisons of alcohol consumption. Alcohol Res Health 27: 95–109.

Population insight of the relationship between lifestyle and cancer: A population-based survey

Fawaz Dabea Alshammari1, Hussain Gadelkarim Ahmed2,*, Dena Alshammari1, Ahmed Mulfy Alharbi1, Atif Saud Alsaedi1 and Abdulbaset Elasbaly3

- 1 Department of Clinical Laboratory, College of Applied Medical Science, University of Hail, Kingdom of Saudi Arabia (KSA)
 - 2 Department of Pathology, College of Medicine, Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, KSA
- 3 Department of Clinical Laboratory Sciences, College of Applied Medical sciences, Jouf University, Skaka, KSA

ABSTRACT

Background: There is a substantial rise in the incidence of cancer in Saudi Arabia. Life style models and lack of awareness are the prime suspect in this substantial increase. Therefore, the objective of the present study was to assess the relationship between lifestyle and cancer in a population-based Survey in Northern Saudi Arabia. Methodology: This cross-sectional study was conducted in North Saudi Arabia (Hail Region). Data was collected as a part of a community based cancer's awareness movement that covered an area inhibited with approximately 500,000 individuals. Results: In this study, about 2558/3227 (79.3%) and 641/794 (80.7%) believed that tobacco smoking and smokeless are not a risk of cancer development. In this study large section (87.2%) of the study population believe that exposure to diverse occupational or non-occupational chemicals has no role in cancer development. Furthermore, around 59% of the study subjects in the current study believed that repeated exposure to insecticidal chemicals doesn't influence the risk of cancer. Conclusion: The present study point to the urgent need for awareness educational programs and preventive measures towards may lifestyle factors that can increase or decrease the overall risk of cancer among Saudi population.

Keywords: cancer awareness; lifestyle; Saudi Arabia; cancer; risk factors

1. Introduction

The global burden of cancer continues to increase largely both in developed and developing countries [1]. The incidence of cancer continues to rise every years due to accumulation of several risk factors including; increasing tobacco use, physical inactivity, overweight, aging and shifting reproductive patterns accompanying urbanization and economic growth. In 2012, there were 14.1 million new cancer cases and 8.2 million deaths worldwide. In recent years it was observed that the burden of cancer has shifted toward developing world, which represented about 57% of new cases and 65% of cancer deaths worldwide [2]. The incidence of the new cancer cases in developing countries is expected to increase from about 56% to more than 60% of the world's total in 2030, which is attributed to the increasing

However, implementing systematic, equitable and evidence-based strategies for prevention, early detection, diagnosis, treatment and palliation using available resources is a program known as national cancer control program (NCCP) designed by World Health Organization (WHO) to reduce the morbidity and mortality of cancer and improve quality of life of cancer patients. Regardless of resource limitations a country experiencing, when well-perceived and well-managed, a NCCP supports decrease the cancer burden and improve facilities for cancer patients and their families [4]. Increased weight or obesity elevates the risk of several cancers in many organs including; esophagus, colorectum, breast endometrium and kidney. It is necessary to maintain the body mass index within the normal range (18.5–25 kg/m2). Regular physical activity, decreases the risk of colorectal cancer and breast cancer. Alcoholic beverage consumption was found to increase the risk of some cancers including; liver, esophagus, pharynx, oral cavity and breast cancer. Foods frequently contaminated with Aflatoxin increases the risk of hepatocellular carcinoma. Salt preserved foods and high salt consumption perhaps upsurge the risk of carcinoma of the stomach. Certain salted fish was found to increase the risk for colorectal cancer.

Regular intake of Fruits and vegetables most likely decrease the risk of several cancers including; the cancers of oral cavity, esophagus, stomach and colorectum [5]. There is a substantial rise in the incidence of some cancers in Saudi Arabia in recent years due to several etiological risk factors, which differ for different geographical regions in the country [6]. Life style models and lack of awareness are the most common factors expected to contribute to substantial increase in the incidence of cancer in Saudi Arabia [7–11]. Increase of age in general population as well as, obesity are the most challenging factors contributing to the etiology of cancer in Saudi Arabia [12]. Cancer awareness is an increasingly important issue in light of increasing incidence and associated healthcare costs, as well as the presence of risk management strategies [13]. However, the great majority of cancers arise as a consequence of modifiable life style risk factors; therefore community education program targeting cancer risk factors is crucial to reduce the overall incidence of cancer [14]. Therefore, the objective of the present study was to assess the relationship between lifestyle and cancer: A population-based Survey in Saudi Arabia.

2. Materials and methods

This cross-sectional study was conducted in North Saudi Arabia (Hail Region). Data was collected as a p art of a community based cancer's awareness movement that covered an area inhibited with approximately 500,000 individuals. The sample size was calculated using online sample size calculator available at: https://www.calculator.net/sample-size-calculator.html.

Applying confidence interval of 60 ± 1.66 and confidence level of 95%, the sample size was 3326.

Participants were targeted in different public settings including University of Hail. Each participant was asked to fill a questionnaire about tobacco and alcohol habits and other information regarding their attitudes towards these factors in relation to cancer etiology. Beside the demographical characteristics, the questionnaire also included; Living with smoker, Smokeless tobacco; Chemical usage, Insecticidal exposure, Vegetable and fruit wash before eating, Radiation exposure, Soft or refined food can increase the risk of cancer, Preserved food can increase the risk of cancer, Some food can increase the risk of cancer, Natural food can decrease the risk of cancer, Vegetable and fruit intake decrease cancer risk, Green Tea and other antioxidant decrease cancer risk, Physical activity decrease cancer risk, Increased body weight increases cancer risk, Obesity can increase the risk of cancer.

2.1. Statistical analysis

Statistical analysis was performed by proportion. The Microsoft Excel Office 2007 and the SPSS software (version 16) were used for statistical analysis. The software was used for calculation and production of frequencies and percentages.

2.2. Ethical consent

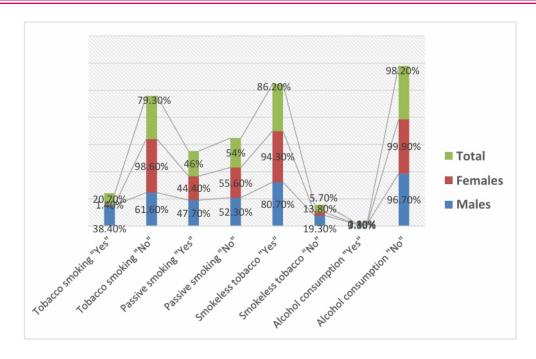
Written informed consent was obtained from each respondent, ensuring strict anonymity. The Ethical Committee of the Department of Pathology, College of Medicine at the University of Hail has approved the study.

3. Results

This study included 3326 participants, their ages ranging from 15 to 77 years old with a mean age of 25 years. Out of 3253 respondents for gender classification, 1701 (52.3%) were males and 1552 (47.7%) were females.

The knowledge about the relationship between cancer risk and factors such as tobacco usage and alcoholic beverages consumption was summarized in Table 1. Out of 3227 r espondents, 669/3227 (20.7%) participants were found to believe that tobacco smoking is a major risk factors for cancer and the remaining 2558/3227 (79.3%) had indicated that tobacco smoking is not risk factors. Out of the 669 answered "yes", 647/1684 (38.4%) were males compared to 22/1543 (1.4%) females. Out of 2558

participants answered "No", 1037/1684 (61.6%) were males and 1521/1543 (98.6%) were females, as indicated in Table 1, Figure 1.


With regard to exposure to passive smoking (living with smoker), 1430/3103 (46%) participants were found to believe that exposure to passive smoke is a risk for cancer and the remaining 1673/3103 (54%), were not. Out of 1430 respondents "Yes", 761/1597 (47.7%) were males and 669/1506 (44.4%) were females. Out of 1673 respondent "No", 836/1597 (52.3%) were males and 837/1506 (55.6%) were females, as shown in Table 1, Figure 1.

With regard to smokeless tobacco, 1139/1322 (86.2%) participants has pointed out that, smokeless tobacco is a major risk for cancer and only 183/1322 (13.8%) have answered "No". Out of the 1139 "Yes" respondents, 641/794 (80.7%) were males and 498/528 (94.3%) were females. Out of 183 answered "No", 153/794 (19.3%) were males and 30/528 (5.7%) were females, as shown in Table 1, Figure 1.

For alcoholic beverages consumption, only 57/3207 (1.8%) have agreed that alcohol consumption may be a risk factor for cancer and the remaining 3150/3207 (98.2%) believed that alcohol beverage consumption is not considered as a cancer risk factor, as indicated in Table 1, Figure 1.

Table 1. The relationship between cancer, tobacco exposure, and alcohol consumption.

Variable	Category	Males	Females	Total
Tobacco smoking				
	Yes	647	22	669
	No	1037	1521	2558
	Total	1684	1543	3227
Living with smoker				
	Yes	761	669	1430
	No	836	837	1673
	Total	1597	1506	3103
Smokeless tobacco				
	Yes	641	498	1139
	No	153	30	183
	Total	794	528	1322
Alcohol consumption				
-	Yes	55	2	57
	No	1607	1543	3150
	Total	1662	1545	3207

Figure 1. The proportions of the relationship between cancer, tobacco exposure, and alcohol consumption.

The knowledge on the relationship between cancer, chemical usage, insecticidal, and radiation exposure was summarized in Table 2, Figure 2. Out of the 1884 respondents, about 1640/1880 (87.2%) participants believed that comprehensive repeated chemical substances usage is a major cancer risk factor and the remaining 240/1880 (12.8%) have reverse believe. Out of the 240 participants answered "No", 194/944 (20.6%) were males and the remaining 46/936 (5%) were females.

Out of the 3153 respondents, about 1292/3153 (41%) participants believed that comprehensive repeated exposure to insecticidal chemicals is a major cancer risk factor and the remaining 1861/3153 (59%) have reverse believe. Out of the 1861 participants answered "No", 1210/1663 (72.9%) were males and the remaining 651/1490 (43.7%) were females. Out of the 3207 respondents, about 469/3207 (14.6%) participants believed that comprehensive repeated eating of vegetables and fruits without wash is a major cancer risk factor and the remaining 2738/3207 (85.4%) have reverse believe. Out of the 2738 participants answered "No", 1341/2738 (49%) were males and the remaining 1397/2738 (51%) were females.

Out of the 1750 respondents, about 1514/1750 (86.5%) participants believed that exposure to radiation is a major cancer risk factor and the remaining 236/1750 (13.5%) have reverse believe. Out of the 236 participants answered "No", 195/1055 (18.5%) were males and the remaining 41/695 (6%) were females, as indicated in Table 2, Figure 2.

Table 2. The relationship between cancer, chemical usage, insecticidal, and radiation exposure.

Variable	Category	Males	Females	Total
Chemical usage				
	Yes	750	890	1640
	No	194	46	240
	Total	944	936	1880
Insecticidal exposure				
	Yes	453	839	1292
	No	1210	651	1861
	Total	1663	1490	3153
Vegetable and fruit wash before eating				
	Yes	339	130	469
	No	1341	1397	2738
	Total	1680	1527	3207
Radiation exposure				
	Yes	860	654	1514
	No	195	41	236
	Total	1055	695	1750

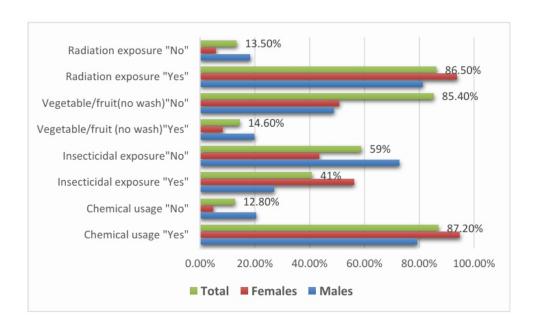


Figure 2. The relationship between cancer, chemical usage, insecticidal, and radiation exposure.

The relationship between cancer, and food habits was summarized in Table 3, Figure 3. When asking the participants whether soft or refined food can increase the risk of cancer, around 1230 participants have responded. Out 1230 respondents, 920 (74.8%) (388 were males and 532 were females) answered "Yes" and 310 (25.2%) (265 were males and 45 were females) answered "No".

When asking the participants whether preserved food can increase the risk of cancer, about 1372 participants have responded. Out 1372 respondents, 1082 (79%) (462 were males and 620 were females) answered "Yes" and 290 (21%) (240 were males and 50 were females) answered "No".

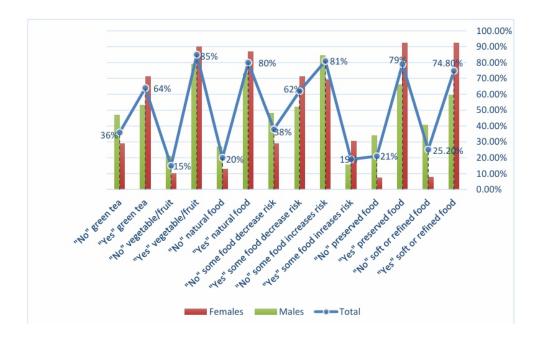

When asking the participants whether some food can increase the risk of cancer, about 465 participants have responded. Out 465 respondents, 89 (19%) (56 were males and 33 were females) answered "Yes" and 376 (81%) (301 were males and 75 were females) answered "No". When asking the participants whether some food can decrease the risk of cancer, about 2858 participants have responded. Out 2858 respondents, 1767 (19%) (708 were males and 1059 were females) answered "Yes" and 1091 (81%) (653 were males and 438 were females) answered "No". When asking the participants whether natural food can decrease the risk of cancer, about 2581 participants have responded. Out 2581 respondents, 2072 (80%) (873 were males and 1199 were females) answered "Yes" and 509 (20%) (328 were males and 181 were females) answered "No". When asking the participants whether vegetable/fruit intake can decrease the risk of cancer, about 2039 participants have responded. Out 2039 respondents, 1738 (80%) (654 were males and 1084 were females) answered "Yes" and 301 (20%) (177 were males and 124 were females) answered "No". When asking the participants whether anti-oxidants such as green tea intake can decrease the risk of cancer, about 1834 participants have responded. Out 1834 respondents, 1169 (64%) (393 were males and 776 were females) answered "Yes" and 301 (36%) (345 were males and 320 were females) answered "No", as shown in Table 3, Figure 3.

Table 3. The relationship between cancer, and food habits.

Variable	Category	Males	Females	Total
Soft or refined food c	an increase the risk of cancer	•		
	Yes	388	532	920
	No	265	45	310
	Total	653	577	1230
Preserved food can in	ncrease the risk of cancer			
	Yes	462	620	1082
	No	240	50	290
	Total	702	670	1372
Some food can increa	ase the risk of cancer			
	Yes	56	33	89
	No	301	75	376
	Total	357	108	465
Some food can decrea	ase the risk of cancer			
	Yes	708	1059	1767
	No	653	438	1091
	Total	1361	1497	2858
Natural food can dec	rease the risk of cancer			
	Yes	873	1199	2072
	No	328	181	509
	Total	1201	1380	2581
Vegetable and fruit in	ntake decrease cancer risk			
	Yes	654	1084	1738
	No	177	124	301
	Total	831	1208	2039

Continued on next page

Variable	Category	Males	Females	Total
Green Tea and other	er antioxidant decrease cancer i	risk		
	Yes	393	776	1169
	No	345	320	665
	Total	738	1096	1834

Figure 3. The relationship between cancer, and food habits.

The relationship between cancer, and body weight and physical activity was summarized in Table 4, Figure 4. With regard to the physical activity as a factor that can decrease the risk of cancer, out of 3193 respondents, 1711 (54%) participants greed "Yes" (874 were males and 837 were females) that physical activity can reduce the risk of cancer, hence, about 1482 (46%) participants (793 were males and 898 were females) disagreed "No".

With regard to increased body weight as a factor that can increase the risk of cancer, out of 3172 respondents, 1631 (51%) participants greed "Yes" (759 were males and 872 were females) that increased body weight can increase the risk of cancer, hence, about 1541 (49%) participants (898 were males and 643 were females) disagreed "No".

With regard to obesity as a factor that can increase the risk of cancer, out of 1124 respondents, 745 (66%) participants greed "Yes" (379 were males and 366 were females) that obesity can increase the risk of cancer, hence, about 379 (34%) participants (299 were males and 80 were females) disagreed "No".

Table 4. The relationship between cancer, and body weight and physical activity.

Variable	Category	Males	Females	Total
Physical activity	decrease cancer risk			
	Yes	874	837	1711
	No	793	689	1482
	Total	1667	1526	3193
Increased body w	veight increases cancer r	isk		
	Yes	759	872	1631
	No	898	643	1541
	Total	1657	1515	3172
Obesity can incre	ease the risk of cancer			
	Yes	379	366	745
	No	299	80	379
	Total	678	446	1124

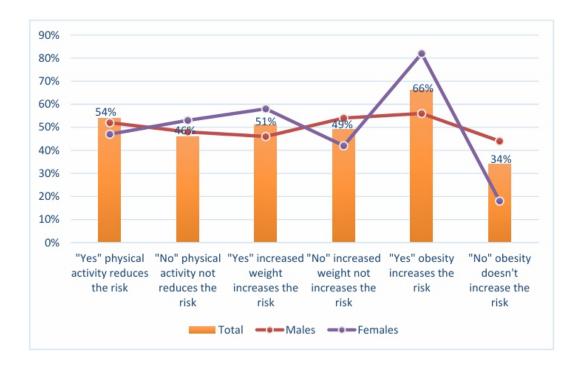


Figure 4. The relationship between cancer, and body weight and physical activity.

4. Discussion

Cancer represent a major health problem worldwide. Although the prevalence of cancer is high in developed countries, but there is a tremendous increase of cancer in developing countries. In light of increasing of new cancer cases, there is an uprising need for implementing cancer awareness programs.

In the present study we tried to highlight some important cancer issues in order to find out the gaps in this context to make available more information to take effective cancer prevention strategies.

In the current study we screened a large population in a cross sectional survey in Hail region (Northern Saudi Arabia) in order to evaluate the level community awareness and knowledge toward some cancer related life style habits. Hail is a province of Saudi Arabia, located in the north of the country. It has an area of 103,887 km² and a population of 547226 (2010 census) [15]. Hail's people are social able and they have the custom of regular gathering in what is known locally as "Diwania", therefore, is always opportunities to spread the awareness through these public gathers.

In this study, about 79.3% and 80.7% believed that tobacco smoking and smokeless are not a risk of cancer development. These findings have great discrepancies from other studies that reported much lower percentages. In study to evaluate the awareness of oral cancer and perception of tobacco use cessation counseling 97.6% Indian, 96.5% Saudi, 96.5% Yemeni and 98.4% United Arab Emirates respondents recognized the association between oral cancer and cigarette smoking [16]. Another study indicated that tobacco chewing (84%), tobacco chewing with areca nut (68%), chewing areca nut alone (51%) and exposure to actinic radiation (71%) as risk factors [17]. Another study from Yemen indicted that about 71.5% of the participants had heard about oral cancer. Smoking and smokeless tobacco usage were identified as the major risk factors by 71.5% and 73.7% of the participants, respectively [18]. In a study to assess the level of awareness regarding association between tobacco use and cancer, the risk awareness of the smoking lung cancer link was 83.6%, while the risk awareness of the smoking heart disease link was 46.5% [19]. In a study from Saudi Arabia to assess the level of awareness and knowledge about signs and risk factors of oral cancer in the general population in Saudi Arabia. Only 53.6% of the participants had heard of oral cancer. Smoking and alcohol consumption were identified as the major risk factors by 81.7% and 56.3% of the participants, respectively [20]. However, the acute differences in these studies compared to our findings might be attributed to study population. The majority of these previous studies devoted to students and more educated population settings, hence, our study was restricted to deep community base setting in northern Saudi Arabia. The level of education and less exposure to civilization in addition to the lack of awareness might strongly contribute the findings of the present study.

In the present study about 98.2% of the participants disagreed that alcohol consumption is a risk factor for cancer development. Although it was well established that alcohol beverages consumption is a risk for the development of several precancerous and cancerous lesions [21–23], but there is a lack of data in this regard from Saudi Arabia. However, studies from Saudi Arabia have showed low epidemiological values in this regard [24,25]. In Saudi Arabia, alcohol beverage consumption is illegal and also considered as social stigma, thus it is difficult to find the exact epidemiological measures.

In this study large section (87.2%) of the study population believe that exposure to diverse occupational or non-occupational chemicals has no role in cancer development. The exposure to diverse types of chemical substances has been linked to a number of cancers. Early-life arsenic exposure, has been linked to lung and bladder cancer [26], workplace chemical exposures (soldering materials) has been linked to breast cancer [27]. Occupational exposure to diverse chemical in industrialized areas has been linked to several cancers [28]. However the only study in this context from Saudi Arabia linked the occupational benzene exposure in petroleum stations to development of bladder precancerous changes [29].

Furthermore, around 59% of the study subject in the current study believed that repeated exposure to insecticidal chemicals doesn't influence the risk of cancer. Exposure to insecticidal chemicals such as O rganochlorine insecticides has been linked to some cancers, particularly leukemia [30,31].

In the present study about 85.4% of the participants believed that comprehensive repeated eating of vegetables and fruits without wash doesn't increase the risk of cancer. The majority of these vegetables and fruits are contaminated with various chemicals including pesticides insecticides, and herbicides, the risk of which is well established [30,32,33]. With regard to the exposure to radiation, approximately 86.5% of the participants believed that exposure to radiation is a major cancer risk factor. This is high percentage of awareness toward radiation hazard. When asked the participants whether soft or refined food can increase the risk of cancer, around 74.8% answered yes. Many studies have suggested the relationship between intake of refined and fast food and the risk of cancer [34–36], which requires, the undertaking of certain educational and preventive measures.

When asked the participants whether preserved food can increase the risk of cancer, about 79% of the participants agreed. However, the intake of preserved foods was positively associated with the incidence of epithelial ovarian cancer [37], as well as, esophageal carcinoma [38]. On we asked the participants whether some food can increase the risk of cancer, only 19% have answered yes. It was suggested that vegetable fiber and total fiber play very important roles in protecting against colorectal cancer [39]. Increased intake of omega-3 fatty acids associated with decreased omega-6—resulting in higher omega-3 to omega-6 ratio compared with Western-type diet—is inversely associated with breast cancer risk [40]. Moreover, similar results were found on asked the participants whether some food can decrease the risk of cancer. There are several dietary types can reduces the risk of some cancers. It was found that soy intake possibly decreases the risk of breast cancer [41].

On asking the participants whether natural food can decrease the risk of cancer, 80% answered yes. Because of their role as antioxidants, the intake of carotenoids has been found to reduce the risk of head

and neck cancer (HNC) [42]. The consumption of fruits is well known to reduce the risk of human cancers. Since oxidative stress and chronic inflammation play important roles in cancer development, dried fruits with antioxidative and anti-inflammatory properties hold promise for cancer chemoprevention. The antioxidant, anti-inflammatory and chemopreventive activities of dried fruits are largely attributed to their polyphenols and vitamins. Dried fruits contain adequate amounts of bioactive principles, such as an thocyanins, acetogenins, catechins, coumarins, phenolic acids, terpenes, xanthones, and others [43].

On asking the participants whether vegetable/fruit intake can decrease the risk of cancer, about 80% agreed. A higher consumption of vegetable and fruit was found to be associated with a decreased risk of several cancers, such as breast cancer, hepatocellular carcinoma, gastric carcinoma etc [44–46]. When asking the participants whether anti-oxidants such as green tea intake can decrease the risk of cancer, about 64% agreed. An inverse association between green tea intake and lung cancer risk has been observed among never smokers but not among smokers [47]. There are insufficient evidences to support green tea consumption reduces the risk of esophageal cancer, gastric cancer, and pancreatic cancer [48–50].

With regard to the physical activity as a factor that can decrease the risk of cancer, about 46% of the study population disagreed. Physical activity is consistently associated with a reduced risk of colorectal cancer in epidemiologic studies. Overall, a stronger relative risk of physical activity on colorectal cancer risk was observed in the higher body mass index group, although the difference was not statistically significant, suggesting an added benefit of physical activity as a cancer prevention strategy in population groups with strong risk factors for colorectal cancer [51]. Exercise promotes significant improvements in clinical, functional, and in some populations, survival outcomes and can be recommended regardless of the type of cancer. Although generally safe, patients should be screened and appropriate precautions taken. Efforts to strengthen uniformity in clinical trial reporting, develop clinical practice guidelines, and integrate exercise and rehabilitation services into the cancer delivery system are needed [52].

With regard to increased body weight as a factor that can increase the risk of cancer, about 49% of the study population in the present study disagreed. he joint association between energy balance and cancer risk are hypothesized to share the same underlying mechanisms, the amplification of chemical mediators that modulate cancer risk depending on the responsiveness to those hormones to the target tissue of interest. Disentangling the connection between obesity, the insulin-IGF axis, endogenous hormones, inflammatory markers, and their molecular interaction is vital [53]. The association between obesity and several cancers is well-established [54,55].

Alcohol consumption, salt consumption, red meat consumption and Aflatoxin contamination are considered as cancer risks [56]. The limitations in the current study include its cross-sectional design. Longitudinal studies in the future might give up insight into developments in the outcomes of existing and future lifestyle related cancer control measures. Another limitation of the present study is that data were obtained via self-report.

5. Conclusions

The present study point to the urgent need for awareness educational programs and preventive measures towards may lifestyle factors that can increase or decrease the overall risk of cancer among Saudi population. There is a necessity for in depth cancer prevention related studies and further specific measurements to prove that life style risk factors have influence on cancer burden in Saudi Arabia and in Northern Saudi Arabia in particular.

Acknowledgements

Authors would like to thank all participants in the present study. Also our thanks extend to the medical students of the University of Hail for their contribution in data collection.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

- 1. jemal A, Bray F, Center MM, et al. (2011) Global cancer statistics 2011. Ca-Cancer J Clin 61: 69–90.
- 2. Torre LA, Bray F, Siegel RL, et al. (2015) Global cancer statistics, 2012. Ca-Cancer J Clin 65: 87–108.
- 3. jemal A, Center MM, DeSantis C, et al. (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19: 1893–1907.
- 4. WHO. National Cancer Control Programmes (NCCP) 2018. Available from: http://www.who.int/cancer/nccp/en/.
- 5. Key TJ, Schatzkin A, Willett WC, et al. (2004) Diet, nutrition and the prevention of cancer. Public Health Nutr 7: 187–200.

- 6. Almutlaq BA, Almuazzi RF, Almuhayfir AA, et al. (2017) Breast cancer in Saudi Arabia and its possible risk factors. J Cancer Policy 12: 83–89.
- 7. Alshammari FD, Khalifa AM, Kosba AA, et al. (2015) Assessment of perception of medical students in regard to links between tobacco or alcohol use and cancer. Asian Pac J Cancer Prev 16: 2697–2700.
- 8. Alreshidi FS, Bin ahmed IA, Alharbi SH, et al. (2017) Survey on Knowledge and Attitudes Related to the Relationship between Smoking, Alcohol, Radiation, Cosmetics Use and Risk of Breast Cancer in the Northern Saudi Arabia. Am J Public Health Res 5: 147–153.
- 9. Alrashidi AG, Ahmed HG, Alshammeri KJK, et al. (2017) Knowledge and Perceptions of Common Breast Cancer Risk Factors in Northern Saudi Arabia. Asian Pac J Cancer Prev 18: 2755–2761.
- 10. Alreshidi NA, Alrashidi AG, Alrashedi SA, et al. (2017) Assessment of Awareness of Smokeless Tobacco Usage in Northern and Western Saudi Arabia. Saudi J Oral Dent Res 2: 249–256.
- 11. Bin ahmed IA, Alharbi SH, Alreshidi FS, et al. (2017) Breast Cancer Awareness and Approach toward Exposure to Diverse Patterns of Hormones among Women in Northern Saudi Arabia. Am J Cancer Prev 5: 46–52.
- 12. Ahmed HG, Ginawi IA, Elasbali AM, et al. (2014) Prevalence of obesity in Hail region, KSA: In a comprehensive survey. J Obesity 2014: 5.
- 13. Sheshachalam A, Chakravarthy AR (2015) The cancer awareness assessment project: A small-scale survey across people with different levels of education in Mysore, India. Indian J Cancer 52: 153–155.
- 14. Al-Azri M, Al-Rasbi K, Al-Hinai M, et al. (2014) Awareness of risk factors for cancer among Omani adults-a community based study. Asian Pac J Cancer Prev 15: 5401–5406.
- 15. General authority for statistic, Kingdom of Saudi Arabia, Population In Hail region by Gender, Age Groups and Nationality 2015. Available from: https://www.stats.gov.sa/en/3158.
- 16. Halawany HS, Jacob V, Abraham NB, et al. (2013) Oral cancer awareness and perception of tobacco use cessation counseling among dental students in four Asian countries. Asian Pac J Cancer Prev 14: 3619–3623.
- 17. Formosa J, Jenner R, Nguyen-Thi MD, et al. (2015) Awareness and Knowledge of Oral Cancer and Potentially Malignant Oral Disorders among Dental Patients in Far North Queensland, Australia. Asian Pac J Cancer Prev 16: 4429–4434.
- 18. Al-Maweri SA, Addas A, Tarakji B, et al. (2014) Public awareness and knowledge of oral cancer in Yemen. Asian Pac J Cancer Prev 15: 10861–10865.
- 19. Peltzer K, Pengpid S (2014) Tobacco use, beliefs and risk awareness in university students from 24 low, middle and emerging economy countries. Asian Pac J Cancer Prev 15: 10033–10038.
- 20. Al-Maweri SA, Tarakji B, Alsalhani AB, et al. (2015) Oral cancer awareness of the general public in Saudi Arabia. Asian Pac J Cancer Prev 16: 3377–3381.

- 21. De Menezes RF, Bergmann A, Thuler LC (2013) Alcohol consumption and risk of cancer: A systematic literature review. Asian Pac J Cancer Prev 14: 4965–4972.
- 22. Bagnardi V, Rota M, Botteri E, et al. (2015) Alcohol consumption and site-specific cancer risk: A comprehensive dose—response meta-analysis. Brit J Cancer 112: 580–593.
- 23. Liu Y, Nguyen N, Colditz GA (2015) Links between alcohol consumption and breast cancer: A look at the evidence. Women's Health 11: 65–77.
- 24. Al-Maweri SA, Tarakji B, Alsalhani AB, et al. (2015) Oral cancer awareness of the general public in Saudi Arabia. Asian Pac J Cancer Prev 16: 3377–3381.
- 25. Alshammari FD (2015) Molecular Screening for P53 Mutations among Tobacco Smokers in a Survey of Awareness of Links between Tobacco, Alcohol Use and Cancer in Saudi Arabia. Asian Pac J Cancer Prev 16: 6845–6849.
- 26. Steinmaus C, Ferreccio C, Acevedo J, et al. (2014) Increased Lung and Bladder Cancer Incidence In Adults After In Utero and Early-Life Arsenic Exposure. Cancer epidemiology,
- biomarkers & prevention: A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 23: 1529–1538.
- 27. Ekenga CC, Parks CG, Sandler DP (2015) Chemical exposures in the workplace and breast cancer risk: A prospective cohort study. Int J Cancer 137: 1765–1774.
- 28. Rim KT (2013) Occupational cancers with chemical exposure and their prevention in Korea: A literature review. Asian Pac J Cancer Prev 14: 3379–3391.
- 29. Ahmed HG, Alshmmari FD, Ginawi IA, et al. (2017) Assessment of urothelial cells atypical changes among petroleum station workers in Saudi Arabia. Eur J Inflammation 15: 1–7.
- 30. Purdue MP, Hoppin JA, Blair A, et al. (2007) Occupational exposure to organochlorine insecticides and cancer incidence in the Agricultural Health Study. Int J Cancer 120: 642–649.
- 31. Parada H, Wolff MS, Engel LS, et al. (2016) Organochlorine insecticides DDT and chlordane in relation to survival following breast cancer. Int J Cancer 138: 565–575.
- 32. Koutros S, Beane Freeman LE, Lubin JH, et al. (2013) Risk of Total and Aggressive Prostate Cancer and Pesticide Use in the Agricultural Health Study. Am J Epidemiol 177: 59–74.
- 33. Glickman LT, Raghavan M, Knapp DW, et al. (2004) Herbicide exposure and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. Javma-J Am Vet Med A 224: 1290–1297.
- 34. Yusof AS, Isa ZM, Shah SA (2012) Dietary patterns and risk of colorectal cancer: A systematic review of cohort studies (2000–2011). Asian Pac J Cancer Prev 13: 4713–4717.
- 35. Franceschi S (1999) Nutrients and food groups and large bowel cancer in Europe. Eur J Cancer Prev 8: S49–S52.
- 36. Ip BC, Liu C, Smith DE, et al. (2014) High-Refined-Carbohydrate and High-Fat Diets Induce Comparable Hepatic Tumorigenesis in Male Mice. J Nutr 144: 647–653.

- 37. Lee AH, Su D, Pasalich M, et al. (2013) Preserved foods associated with increased risk of ovarian cancer. Gynecol Oncol 129: 570–573.
- 38. Song QK, Zhao L, Li J, et al. (2013) Adverse effects of preserved vegetables on squamous cell carcinoma of esophagus and precancer lesions in a high risk area. Asian Pac J Cancer Prev 14: 659–663.
- 39. Song Y, Liu M, Yang FG, et al. (2015) Dietary fibre and the risk of colorectal cancer: a case-control study. Asian Pac J Cancer Prev 16: 3747–3752.
- 40. De Lorgeril M, Salen P (2014) Do statins increase and Mediterranean diet decrease the risk of breast cancer? BMC Med 12: 94.
- 41. Nagata C, Mizoue T, Tanaka K, et al. (2014) Soy intake and breast cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 44: 282–295.
- 42. Leoncini E, Nedovic D, Panic N, et al. (2015) Carotenoid Intake from Natural Sources and Head and Neck Cancer: A Systematic Review and Meta-analysis of Epidemiological Studies. Cancer Epidemiol Biomarkers Prev 24: 1003–1011.
- 43. Kundu JK, Chun KS (2014) The promise of dried fruits in cancer chemoprevention. Asian Pac J Cancer Prev 15: 3343–3352.
- 44. Shimazu T, Wakai K, Tamakoshi A, et al. (2014) Association of vegetable and fruit intake with gastric cancer risk among Japanese: A pooled analysis of four cohort studies. Ann Oncol 25: 1228–1233.
- 45. Kruk J (2014) Association between vegetable, fruit and carbohydrate intake and breast cancer risk in relation to physical activity. Asian Pac J Cancer Prev 15: 4429–4436.
- 46. Bamia C, Lagiou P, Jenab M, et al. (2015) Fruit and vegetable consumption in relation to hepatocellular carcinoma in a multi-centre, European cohort study. Brit J Cancer 112: 1273–1282.
- 47. Yuan JM (2013) Cancer prevention by green tea: Evidence from epidemiologic studies. Am J Clin Nutr 98: 1676S–1681S.
- 48. Sang LX, Chang B, Li XH, et al. (2013) Green tea consumption and risk of esophageal cancer: A meta-analysis of published epidemiological studies. Nutr Cancer 65: 802–812.
- 49. Hou IC, Amarnani S, Chong MT, et al. (2013) Green tea and the risk of gastric cancer: Epidemiological evidence. World J Gastroenterol 19: 3713–3722.
- 50. Zeng JL, Li ZH, Wang ZC, et al. (2014) Green Tea Consumption and Risk of Pancreatic Cancer: A Meta-analysis. Nutrients 6: 4640–4650.
- 51. Shaw E, Farris MS, Stone CR, et al. (2018) Effects of physical activity on colorectal cancer risk among family history and body mass index subgroups: A systematic review and meta-analysis. BMC Cancer 18: 71.

- 52. Stout NL, Baima J, Swisher AK, et al. (2017) A Systematic Review of Exercise Systematic Reviews in the Cancer Literature (2005–2017). PMR 9: S347–S384.
- 53. Fair AM, Montgomery K (2009) Energy balance, physical activity, and cancer risk. Methods Mol Biol 472: 57–88.
- 54. Lin Y, Wang Y, Wu Q, et al. (2018) Association between obesity and bladder cancer recurrence: A meta-analysis. Clin Chim Acta 480: 41–46.
- 55. Nogueira L, Stolzenberg-Solomon R, Gamborg M, et al. (2017) Childhood body mass index and risk of adult pancreatic cancer. Curr Dev Nutr 1: e001362.
- 56. Holman DM, White MC (2011) Dietary behaviors related to cancer prevention among preadolescents and adolescents: The gap between recommendations and reality. Nutr J 10: 60.

Psychometric properties of the workplace psychologically violent behaviors-WPVB instrument. Translation and validation in Greek Health Professionals

Aristotelis Koinis1,*, Emmanouil Velonakis2, Chara Tzavara3, Foteini Tzavella1 and Styliani Tziaferi1

- 1 University of Peloponnese, Department of Nursing, Laboratory of Integrated Health Care, Sparta, Greece
- 2 National and Kapodistrian University of Athens, Faculty of Health Sciences, Athens, Greece
 - 3 Medical School of Athens

ABSTRACT

Background: Mobbing exerts severe psychological and occupational effects on the victim. This study aims to validate the Yildirim & Yildirim's Workplace Psychologically Violent Behaviors (WPVB) instrument (2008) in the Greek language in Greece, as cultural variations may result in significantly different perceptions of mobbing. Methodology: A translation process of the WPVB questionnaire scale was followed from the English to the Greek version and a review by a team of experts for its content validity took place, as well. Principal component analysis took place and the Cronbach's index was 0.95. The cross sectional, quantitative study was performed in 1536 health professionals (Hps), working in 11 public hospitals for at least one year with response rate of 76.8%. Results: Factor analysis revealed two factors, and 31-item construct, compared to the four factors and the 33-item construct of the original version of the tool. All items were found to have a statistically significant correlation (p < 0.001). Median score was 0.48. Whereas 25% of answers score was above 1.00, thus suggesting significant mobbing in around 25% of HPs. Association of WPVBs subscales with sex and occupation are had lower values in women as compared to men. Lower scores on "Attack on personality" and "Total mobbing" score were recorded in nurses as compared to doctors. Doctors had lower scores on "Individual's isolation from work" as compared to administrative personnel, while had greater scores on "Individual's isolation from work" as compared to technicians. Nurses had significantly lower scores on "Attack on professional status", "Individual's isolation from work", "Direct attack" and "Total mobbing" score as compared to administrative personnel. Conclusions: The study highlights that the phenomenon of mobbing exists in Greek HPs regardless of age, gender, level of study and negatively affects their lives. Focusing on improving this area, is expected to promote occupational health and safety of these workers.

Key words: health professionals; instrument; mobbing; nurses; psychometrics

1. Introduction

The phenomenon of mobbing involves employees "ganging up" on a target employee and subjecting him or her to psychological harassment [1]. This "mobbing" behavior exerts severe psychological and occupational effects on the victim. In Greece, it seems that the phenomenon of moral harassment exists

in all work environments including the health sector [2]. A study on the effect of mobbing on the professional life of nurses in seven Greek hospitals showed that nurses, men, and women (71%), had been victims of moral harassment during the past year and had psychosomatic symptoms (anxiety 54.3%, headaches 52%, denial of work 28%, depression 16.3% etc), [3]. Also, 22.8% of the respondents stated that they had been harassed at some time by a colleague during working in the hospital. Of the victims of moral harassment, only 38.2% appealed for help. The majority (80%) said that their personal life [3] had been affected. In a study by Yildirim and Yildirim [4], on the moral harassment of nurses in public and private healthcare facilities by their heads and colleagues that lead to mental and physical health effects, it was found that the vast majority (85.6%) were victims of moral harassment over the last 12 months. A research in Cyprus among the Health-care professionals for the prevalence and forms of workplace bullying has shown that 135 employees (45.6%) were exposed to at least one bullying behavior at work within the previous 12 months, whereas 9.9% were exposed to at least one bullying behavior at least once weekly within the previous 12 months [5]. In another similar study by Sahin et al. [6], registered doctors of Turkish origin who worked in private hospitals and as auxiliary staff at university institutions reported that they were more exposed to moral harassment behaviors (87.7%) than permanent medical staff. A study in Taiwan by Pai and Lee [7] in nurses in public hospitals investigating the risk factors and the consequences of physical and psychological violence for their mental health showed that of 521 participants, 102 (19.6%) reported that they had been subjected to physical violence, 268 (51.4%) had suffered verbal abuse, 155 (29.8%) had experienced/threats and 67 (12.9%) had sexual harassment. A recent study by Erdogan & Yildirim [8] for the exposure of healthcare professionals' to mobbing behaviors reported that the rate of exposure to one of the subdimensions of mobbing scale at least once in the last year was 66.4% for isolation, 71.8% for attack on professional status, 78.1% for attack on personality, and 28.4% for direct negative behaviors. Females as compared with males and participants with low income as compared to high income were more exposed to mobbing. Postgraduate participants less commonly suffered from mobbing. The nurses as compared with doctors were more exposed to mobbing and the individuals with an occupational experience of >10 years were more exposed to mobbing.

In a recent study in Turkey about mobbing behaviors encountered by nurses and their effects on nurses, showed that among the nurses participating in this study, 62.2% stated that they encountered mobbing behaviors in the workplace once or for more times over the last twelve months. The most frequent mobbing behaviors experienced by the nurses were in the form of "Attack on Professional Status" (67.7%). [9]

Although there is a small number of studies in Greece-[10–14] for the impact of mobbing on healthcare providers, according to studies from abroad, it is imperative to validate the specific tool to measure psychological violence and behaviors that will help to investigate these effects. According to the effects of mobbing behaviors on healthcare providers, recent studies have shown that they cause many mental and physical health problems and have a negative impact on their quality of life. In the study by Durmus et al. [9], mobbing behaviors in the workplace often affected the nurses psychologically.

In a study conducted with nurses in Turkey, Yildirim [15] found that reactions to mobbing behaviors tended to be physical disorders such as fatigue and stress, followed by over-eating or poor appetite and headaches. Silva Joao and Saldanha Portelada (2016) reported similar results, too. In their study, the nurses who were exposed to mobbing frequently experienced anxiety, insomnia, restlessness, failure, distrust feelings and impaired concentration. Therefore, it is consistently difficult for an unhappy, sleepless, anxious and distracted member of the nursing profession with low self-esteem and profoundly disturbed wellbeing state to carry out the nursing process successfully and to provide quality services [16,17].

When the effect of mobbing on the performance of the nurses was evaluated, the nurses marked statements such as decreased commitment to work, lack of concentration and making more mistakes. Thus, the diminished work efficiency or motivation of a nurse who is suffering from mobbing directly leads to poor quality of care for patients/healthy individuals. A decrease in patient care quality may cause many risk factors such as prolongation of hospital stay by adversely affecting patients' health [16,17]. A 117 descriptive study in Turkey by Ekici and Beder [18] assessed the prevalence of intimidation in the workplace of 201 doctors and 309 nurses working at a university hospital in Turkey, as well as the effects of the phenomenon. The study showed that psychological violence in the workplace has a significant effect on the development of the depressive disorder of both doctors (27%) and nurses (33%). The study of Malinauskiene and Einarsen [19] investigates intimidation in the workplace and the symptoms of post-traumatic anxiety disorder in family doctors in Lithuania. The prevalence of post-traumatic symptoms was 15.8%, quite high for general practitioners. A study in Iran by Najafi and his colleagues [20] investigated the perceptions and experiences of Iranian nurses about past experiences of violence against them, as well as the implications of workplace violence by patient relatives, colleagues and their directors/supervisors. In addition to the negative impact on the personal and family lives of the nurses identified, workplace violence can lead to lower quality of care for patients and a negative attitude what the nursing profession [20]. A very recent qualitative study by Hassanjhani et al.[21] took place in Iran on the consequences of mobbing in the lives of 16 nurses working in the emergency departments of five hospitals in Azerbaijan.

It has been found that the practice of violence and harassment in the workplace can lead to consequences that negatively affect their quality of life in general. In particular, it can lead to psychological and psychiatric disorders, organic diseases, questioning their professional integrity, and social stigma and withdrawal. People who suffer from ethical and psychological violence/harassment at work have increased cooperative difficulties, have reduced stress resistance, and feel physical discomfort [22]. The serious consequences of the mobbing at the workplace are not limited to the victim itself but extend to the body/service where such phenomena occur. The organizational and team productivity and efficiency of public services are undermined [23]. Negative effects for the HPs have significant impact both in their professional and personal lives, contributing to a negative climate in the organization as whole. Mobbing can be responsible for a wide variety of psychological and social problems, which can include absence from the workplace, lower productivity at work, burnout, stress, anxiety and even depression [24]. Also, the critical review of Fountouki et al. [25] about the effect of anxiety in nursing staff has shown that nurses when they are in situations under heavy stress that has a negative impact on their professional lives, such as insufficient work recourses, dissatisfaction with psychosocial work environment, poor communication with superiors, lowering levels of education achieved and pay, splitshifts and prolonged night shifts, high demanding tasks, verbal abuse, mobbing and antagonistic attitudes in work place and poor organization at work [25].

On the other hand, a well-developed reliable taxonomy of workplace bullying has not yet been established and workplace bullying has been categorized often with little scientific evidence. Nevertheless, the work of Rodriguez-Carballeira et al. [26] is a considerable step towards this direction, placing emphasis, on emotional and physical isolation, which is considered as a separate category.

The development of a reliable and widely accepted taxonomy could play a critical role in instrument development or refinement and allow the reliable measurement and description of this phenomenon. Although mobbing is frequent, one only validated instrument has been used to measure it in Greece. Besides The Negative Acts Questionnaire (NAQ-22), which is measuring perceived exposure to workplace bullying in teachers, and the Greek version of Leymann Inventory of Psychological Terror (LIPT) instrument, which was validated by Zachariadou et al. [5], no other instrument exists in our country for the measurement of psychological violence that health professionals are exposed to in the workplace. The instrument proposed by Yildirim and Yildirim [4] comprises a wide range of mobbing behaviors, it is designed especially for nurses and has been validated in the Turkish nurse population. The purpose of the present study was to validate this instrument in Greek language in Greece, as cultural variations may result in significant different perceptions of mobbing.

1.1. The importance of the study

"Mobbing" or "harassment syndrome" is a reality for most workers. It is observed—if not all in most professions—and in most workplaces, and thus in that of Hospitals, which in any case on its own, is entrusted owing to its special character. Mobbing does not seem to have been studied in depth and wide enough to cover all occupations in all.

The phenomenon has been alarming in our country, even though extensive and in-depth investigations have not been carried out as opposed to foreign countries. The first scientifically substantiated studies [27–31] show that this phenomenon is detrimental to the physical and mental health of workers and, by extension, to their families and is one of the most important causes of abandonment [27–31]. Given that:

- "the actual dimension of mobbing is not yet widely known,
- it has a significant impact on the mental and physical health of the employees and also affects their family, professional and social life,

AIMS Public Health

• it is an interesting scientific subject, which needs more study and exploration and finally it has not been studied enough in our country's healthcare professionals and we believe it is necessary to carry out research to study the moral harassment of HP's and how it affects their quality of life" [32–34].

The present study through the questionnaire accurately captures the magnitude of the problem in the working sector of health services in Greece, behaviors of moral harassment, forms of harassment as well as investigate who these behaviors come from, at this workplace. Finally, it helps to tackle the phenomenon through performing appropriate intervention tools and procedures (information and prevention programs) by both mental health professionals and decision-makers in the field of interdisciplinary teamwork of occupational health and safety services in Greece.

2. Materials and methods

The study's convenience sample consisted of 1536 HPs, working in 11 public hospitals for at least one year, in two health prefectures in Greece. The WPVB instrument used in this study, was initially comprised of 33 items and according to its inventors, shows a four-factor construct. A) Individual's isolation from work, B) Attack on professional status, C) Attack on personality, D) Direct attack. Within the Greek version of this instrument, 11 items are related to "individual's isolation from work", 9 items related to "attack on professional status", 9 items related to "attack on personality" and 4 items related to

"direct attack", other than "direct attack", were shown to have quite high levels of internal consistency. The Greek version of WPVB questionnaire has been proven reliable and valid, with a Cronbach's a found to be 0.93. HPs were asked to mark the frequency within the last 12 months that they had faced items on the given list they were given of workplace antagonistic and unethical behaviors that have had a negative effect on their work performance and to mark also, by whom every behavior they had been exposed to had come from (supervisor, coworker, subordinate or other). A six-point Likert type scale was used for the determination of frequency of mobbing behaviors as follows: 0 = I have never faced, 1 = I have faced once, 2 = I face this sometimes, 3 = I have faced several times, 4 = I frequently face this, 5 = I constantly face this. Individuals who receive a score from the scale divided by the number of items finally included in the instrument (total score/31), that is one or greater, can be said to have faced intentional workplace mobbing behaviors. Questions no.13 and 33, (B1 and D1 in the original version respectively) were excluded from the analysis since they were answered by four individuals only.

2.1. Statistical analysis

Continuous variables are presented with mean and standard deviation (SD) or with median and interquartile range (IQR). Qualitative variables are presented with absolute and relative frequencies. In order to evaluate the construct validity of the questionnaire, a confirmatory factor analysis (CFA) with maximum likelihood procedure was performed. The variance of the latent constructs was fixed at one during parameter estimation. The fit of the CFA model was assessed using the chi-square (χ 2), the comparative fit index (CFI), the goodness of fit index (GFI) and the root mean square error of approximation (RMSEA) [35]. For the CFI and GFI indices, values close to or greater than 0.95 are taken to reflect a good fit to the data [36]. RMSEA values of less than 0.05 indicate a good fit and values as high as 0.08 indicate a reasonable fit [36]. Also, a non-significant chi-square statistic indicates a good fit, but chi-square is usually sensitive to sample sizes and usually significant for large sample sizes [35]. The internal consistency of the questionnaire was analyzed with Cronbach's α. Reliability equal to or greater than 0.70 was considered acceptable. Spearman correlations coefficients were used to explore the association among the WPVB subscales and the association of WHO-Bref, GHQ-28 and Social Support dimensions with WPVB subscales in terms of convergent validity. The correlation coefficient between 0.1 and 0.3 was considered low, between 0.31 and 0.5 moderate and over 0.5 was considered high. In terms of discriminative validity, the WPVBs subscales were compared according to sex using Mann-Whitney tests, while Kruskal-Wallis tests were used for comparisons according to the occupation. Bonferroni correction was used in case of multiple comparisons for occupation. P values reported are two-tailed. Statistical significant level was set at 0.05 and analysis was conducted using SPSS 22.0 and AMOS (SPSS, Chicago, IL, USA) Statistical Software.

3. Results

Participants were 528 men and 1008 women (N = 1536) with a mean age of 39.2 years (SD = 10.3 years). Sample characteristics are presented in Table 1. 47.3% of the participants were married and 56.5% had children. 23.2% were doctors, 48.4% were nurses, 16.4% were administrative personnel, 3.7% technicians and 8.3% other health professionals, 23.7% of the sample reported as having a health problem. Descriptive statistics for the WPVB items are shown in Table 2. Items 1, 2 and 11 had a median value equal to 1. A CFA was conducted to estimate if the model fitted the data well. The CFA indicated an adequate fit of the four-factor model (RMSEA = 0.078, CFI = 0.961 and GFI = 0.932). None of the item cross-loadings exceeded the item loadings on the intended latent construct. The chi-square test of the model was significant as expected (p < 0.05). Corrected item-total correlations and Cronbach's and if an item was deleted per factor are presented in Table 3. All corrected item-total correlations were high and internal consistency reliability was accepted with Cronbach's alpha equal to 0.90 for Attack on personality, 0.92 for Attack on professional status, 0.93 for Individual's isolation from work and 0.78 for Direct attack. Cronbach's alpha for all questionnaire was equal to 0.87.

The inter-correlations of the WPVB subscales are shown in Table 4. All subscales were significantly and positively correlated with each other and the correlations were high. Correlations of WPVBs subscales with WHO-Bref subscales were all negative and significant (Table 5). Also, WPVBs subscales were significantly and positively correlated with all GHQ-28 dimensions. Furthermore, all WPVBs dimensions were significantly and negatively correlated with all Social Support dimensions.

Association of WPVBs subscales with sex and occupation are presented in Table 6. All subscales had lower values in women as compared to men.

Lower scores on "Attack on personality" and "Total mobbing" score were recorded in nurses as compared to doctors. Doctors had lower scores on "Individual's isolation from work" as compared to administrative personnel, while had greater scores on "Individual's isolation from work" as compared to technicians. Nurses had significantly lower scores on "Attack on professional status", "Individual's isolation from work", "Direct attack" and "Total mobbing" score as compared to administrative personnel. Technicians had lower score on "Individual's isolation from work" as compared to nurses, while administrative personnel had greater scores on "Attack on professional status", "Individual's isolation from work" and "Total mobbing" score as compared to technicians. Also, technicians had lower scores on "Attack on professional status" and "Individual's isolation from work", as compared to others.

Table 1. Sample characteristics.

	N (%)	Mean (SD
Sex		
Men	528 (34.4)	
Women	1008 (65.6)	
Age, mean (SD)		39.2 (10.3)
Educational Status		
At most High school/ College	341 (22.3)	
Technical university	536 (35.1)	
University	316 (20.7)	
MSc/ PhD	336 (22.0)	
Marrital Status		
Married	725 (47.3)	
Having children	851 (56.5)	
Living		
Alone	339 (23.0)	
With others	1137 (77.0)	
Occupation		
Doctors	348 (23.2)	
Nurses	726 (48.4)	
In administration	246 (16.4)	
Technicians	56 (3.7)	
Other	124 (8.3)	
Working		
No	76 (5.0)	
Yes	1446 (95.0)	
Residence		
Athens	786 (51.2)	
Out of Athens	750 (48.8)	
Health status		

	N (%)	Mean (SD)
Very bad	53 (3.5)	
Bad	71 (4.6)	
Neither bad nor good	366 (23.8)	
Good	697 (45.4)	
Very good	349 (22.7)	
Having health problem	364 (23.7)	

Table 2. Descriptive statistics for the WPVB items.

	Mean (SD)	Median (IQR)
item 1	1.51 (1.43)	1 (0–3)
item 2	1.17 (1.35)	1 (0–2)
item 3	1.17 (1.40)	0 (0–2)
item 4	0.81 (1.38)	0 (0–1)
item 5	0.83 (1.33)	0 (0–2)
item 6	0.45 (1.04)	0 (0-0)
item 7	1.22 (1.53)	0 (0–2)
item 8	1.01 (1.27)	0 (0-2)

	item 9	1.15 (1.38)	0 (0-2)
	item 10	0.54 (1.02)	0 (0–1)
	item 11	1.09 (1.24)	1 (0-2)
	item 12	0.67 (1.08)	0 (0-1)
	item 13	0.57 (0.99)	0 (0-1)
	item 14	0.59 (1.03)	0 (0-1)
	item 15	0.29 (0.78)	0 (0-0)
	item 16	1.23 (1.45)	0 (0-2)
	item 17	1.04 (1.46)	0 (0-2)
	item 18	0.84 (1.20)	0 (0-2)
	item 19	0.59 (1.08)	0 (0-1)
	item 20	0.36 (0.97)	0 (0-0)
	item 21	0.51 (1.07)	0 (0-0)
	item 22	0.68 (1.29)	0 (0-1)
	item 23	0.78 (1.29)	0 (0-2)
	item 24	0.43 (1.01)	0 (0-0)
	item 25	0.88 (1.24)	0 (0-2)
	item 26	0.47 (1.09)	0 (0-0)
	item 27	0.28 (0.83)	0 (0-0)
	item 28	0.38 (0.93)	0 (0-0)
	item 29	0.59 (1.13)	0 (0-1)
	item 30	0.39 (0.99)	0 (0-0)
	item 31	0.69 (1.22)	0 (0-1)
	item 32	0.42 (0.95)	0 (0-0)
_	item 33	0.25 (0.73)	0 (0-0)

Table 3. Corrected Item-Total Correlations, internal consistency reliability and descriptive statistics of the WPVB factors.

	Corrected Item- Total Correlation	Cronbach's Alpha if Item Deleted	Cronbach's a	Mean (SD)	Median (IQR)
Attack on personality	Total Contelation	II Item Beleted			
item 1	0.69	0.89	0.90	8.78 (8.79)	6 (0–14)
item 2	0.68	0.89			
item 3	0.76	0.88			
item 4	0.67	0.89			
item 6	0.52	0.90			
item 7	0.73	0.89			
item 8	0.79	0.88			
item 9	0.74	0.89			
item 15	0.49	0.90			
Attack on professional					
status					
item 5	0.71	0.91	0.92	6.61 (8.16)	4 (0–10)
item 10	0.76	0.91			
item 11	0.76	0.91			
item 12	0.76	0.91			
item 13	0.78	0.91			
item 14	0.79	0.91			
item 16	0.67	0.92			
item 21	0.75	0.91			
item 29	0.59	0.92			

Individual's isolati	on				
from work					
item 17	0.66	0.93	0.93	7.16 (9.94)	3 (0–10)
item 18	0.71	0.92			
item 19	0.73	0.92			
item 20	0.53	0.93			
item 22	0.77	0.92			
item 23	0.76	0.92			
item 24	0.68	0.93			
item 25	0.77	0.92			
item 26	0.76	0.92			
item 30	0.75	0.92			
item 31	0.77	0.92			
Direct attack					
item 27	0.58	0.73	0.78	1.33 (2.69)	0 (0-2)
item 28	0.67	0.69			
item 32	0.64	0.70			
item 33	0.47	0.78			

 Table 4. Intercorrelations among WPVBs subscales.

	Attack on personality	Attack on professional status	Individual's isolation from work	Direct attack	Total mobbing score
Attack on personality	1.00				
Attack on professional status	0.79	1.00			
Individual's isolation from work	0.74	0.82	1.00		
Direct attack	0.64	0.63	0.71	1.00	
Total mobbing score	0.92	0.92	0.91	0.72	1.00

Note: all correlation coefficients were significant (p < 0.001).

Table 5. Correlation of WPVBs subscales with WHO-Bref, GHQ-28 and Social Support subscales.

	Attack on	Attack on	Individual's	Direct attack	k Total mobbing score	
	personality	professional status	isolation from work			
WHO-Bref						
Total score	-0.14***	-0.08**	-0.12***	-0.17***	-0.11***	
Physical health	-0.20***	-0.13***	-0.13***	-0.17***	-0.15***	
Psychological health	-0.17***	-0.14***	-0.14***	-0.14***	-0.15***	
Social relationships	-0.19***	-0.13***	-0.15***	-0.17***	-0.16***	
Enviroment	-0.19***	-0.11***	-0.12***	-0.16***	-0.13***	
GHQ-28						
Somatic symptoms	0.14***	0.16***	0.15***	0.17***	0.15***	
Anxiety/insomnia	0.17***	0.19***	0.19***	0.19***	0.19***	
Social dysfunction	0.08**	0.13***	0.08**	0.13***	0.10***	
Severe depression	0.06*	0.15***	0.12***	0.13***	0.10***	
Total score	0.14***	0.20***	0.17***	0.20***	0.18***	
Social Support						
Total support	-0.18***	-0.14***	-0.18***	-0.20***	-0.17***	
Support from family	-0.19***	-0.13***	-0.17***	-0.18***	-0.17***	

Support from friends	-0.16***	-0.14***	-0.16***	-0.17***	-0.15***
Support from	-0.18***	-0.13***	-0.16***	-0.19***	-0.17***
significant other	-0.16	-0.15	-0.10	0.19	-0.17

Note: *p < 0.05; **p < 0.01; ***p < 0.001

Table 6. Association of WPVBs subscales with sex and occupation.

	Attack on personality	Attack on professional		Individual's isolation from work		Direct attack		Total mobbing score		
	Mean (SD)	Median (IQR)	Mean (SD)	Median (IQR)	Mean (SD)	Median (IQR)	Mean (SD)	Median (IQR)	Mean (SD)	Median (IQR)
Sex										
Men	10.27 (9.47)	8 (1.5-18)	7.54 (8.5)	5 (0-12)	8.31 (10.81)	3 (0-13)	1.83 (3.11)	0 (0-3)	27.95 (29.82)	17 (4-47)
Women	8.13 (8.41)	6 (0-13)	6.2 (8.03)	3 (0-9)	6.66 (9.52)	2 (0-9)	1.1 (2.45)	0 (0-1)	22.1 (26.05)	15 (2-30)
\mathbf{P}^1	< 0.001	< 0.001	0.017	< 0.001	< 0.001					
Occupation										
Doctors ^A	9.34 (7.79) ^B	9 (3-15)	6.39 (7.17)	5 (0-10)	6.36 (7.8) ^{C,D}	3 (0-10)	1.32 (2.24)	0 (0-2)	23.41 (22.54) ^B	17 (6-32)
Nurses ^B	8.26 (8.84) ^C	6 (0-14)	6.23 (8.43) C	3 (0-9)	6.97 (10.46) C,D	2 (0-9)	1.32 (2.9) ^C	0 (0-1)	22.78 (28.44) C	14 (2-29)
Administrative ^C	9.98 (9.01)	8 (2-18)	7.76 (7.53) ^D	6 (0-12)	8.78 (9.72) ^D	5 (0-13)	1.54 (2.75)	0 (0-2)	28.07 (27.03)D	19 (5-44)
Technicians ^D	8.73 (10.51)	4 (0.5-12)	5.84 (10.67) ^E	1 (0-7)	6.7 (13.37) ^E	0 (0-7)	1.13 (2.85)	0 (0-0)	22.39 (36.66)	4 (2.5-27)
Other ^E	8.84 (9.86)	5.5 (0-15)	8.22 (9.22)	6 (0-13)	8.11 (10.47)	4 (0-14)	1.24 (2.53)	0 (0-1.5)	26.41 (29.03)	17 (5-41)
\mathbb{P}^2	0.003	< 0.001	< 0.001	0.049	< 0.001					

Note: 1Mann-Whitney test; 2Kruskal-Wallis test; A, B, C, D, E indicates significant differences.

4. Discussion

According to the findings of the present study, there is no instrument in Greece for measuring health professionals' perception of workplace psychological violence inflicted on them by their managers, coworkers and/or subordinates and this is the first study conducted nationally on this subject. In addition, the Greek version WPVB Instrument's Cronbach's value was found to be high (0.93).

The NAQ-22 scale applied in the study by Karatza et al. [11] has shown that men face mobbing behavior more than women do. However, on the NAQ-22 scale concerning the distribution of roles, it is noted that women regard themselves as victims more than men do [11]. These two findings, which at first sight appear contradictory, are clarified by the difference in the responses of men and women to mobbing behavior, which is another finding of the present study. As shown in the study by Zachariadou et al. [5] women were exposed to at least one mobbing behavior more often than men within the previous 12 months. Another study by Al-Omari [37] about gender-related result showed that female nurses report 0.5-fold less physical harassment than male nurses and 1.5% more times reported having experienced verbal harassment than male nurses. A similar study in Palestine by Jaradat et al. [38] among nurses showed that male nurses reported a higher prevalence of intimidation than female nurses. Newer and older nurses reported a higher prevalence of exposure to physical and verbal aggression and intimidation. Other recent studies showed that male health professionals are experiencing mobbing behaviors to a greater extent than women [39–41].

According to Mantzouranis et al. [42] study of assess workplace violence in a Greek tertiary hospital, shown that verbal violence was the most common type of incident and the vast majority of employees had experienced work-related violence. Also, HPs (nurses and other health care staff), reported that feeling safer than physicians. Two-thirds of the men and one-third of the women perceive mobbing behavior as normal. This difference of gender in terms of response to mobbing behavior also indicates the viewpoints and perceptions of individuals concerning the phenomenon. In this context, men effectively face mobbing behavior more than women do. However, women regard themselves as victims more than men do. The reason for this is that men consider such behavior to be something normal which can happen in the workplace while women find it unacceptable.

International research suggests that gender-related experiences of workplace bullying could be country-specific. Cortina et al. [43], found that American women reported more workplace bullying experiences than men did. Niedhammer et al. [44] came to the same conclusion about France, whilst Ólafsson and Jóhannsdóttir [45] found that men experienced more workplace bullying in Iceland than women did. Ortega et al. [46] found no significant differences between Danish men and women. Furthermore, Namie [47] found that the perpetrators of 62% of American men who experienced bullying were men. In another similar study by Zachariadou et al. [5] regarding the formal position of perpetrators, superiors were pointed out as mobbers by 57.5% of the overall study population. It might be assumed that professionals who have less power could be in a more vulnerable position for exposure to bullying behaviors.

Nurses in our study have experienced mobbing behaviors in a lesser degree than doctors, and mostly behaviors of attack on the personality and attack on professional status. This is in contrast to research in nurses in Turkey that showed The most frequent mobbing behaviors experienced by the nurses were in the form of "Attack on Professional Status" and this sub-scale was followed by the "Attack on Personality" [9].

Surprisingly enough, fewer than five individuals answered the items "Having physical violence used" and "Always having errors found in your work and work results", namely the B1 & D1 items of the original instrument. Moreover, our mean values suggest considerable workplace bullying. These differences could be attributed to cultural and methodological issues. Firstly, physical violence might seem unacceptable in the nursing working environment and thus "considered out of the question". According to Karatza et al. [11] study using NAQ-22 as a research tool, the most prevalent bullying behaviors in the nursing workplace were related to work itself (unmanageable workloads, being assigned tasks below one's level of competence) and being subjected to "anger expressed by third

parties", while "physical violence" was minimum (4.4 points within a range of 3 to 15). According to Zachariadou et al. [5] study using LIFT as a research tool, another interesting finding of this study was that 9.4% of participants reported that they were bullied by their subordinates, indicating that a managerial position does not guarantee protection from bullying. The above findings suggest that the lack of a firm leadership contributes to the manifestation of mobbing behaviors from all the levels of the hierarchy ladder of the organization. Another study by Iftikhar and Qureshi [48] in nurses reported that the form of this mobbing behavior had a negative impact on the work performance of nurses, their motivation for work, their productivity, their relationships with patients, and symptoms of depression. Zhang et al. [49] conducted a study in 28 provinces in China in 14 cities to investigate the prevalence of the phenomenon of moral harassment and the factors that affect it. 4125 questionnaires were distributed and 3004 nurses of all grades were finally involved in the survey. The results showed that 25.77% of the respondents had experienced physical violence, 63.65% verbal abuse and 2.76% sexual harassment. The study also showed that low-skilled nurses, part-time nurses, and nurses working in China's emergency and pediatric departments have low levels of tolerance in stress and are more likely to experience any form of harassment and violence. On the other hand, detection of errors might be considered as a privilege of superiors, compatible with the organizational culture in Greece, when compared to the rest of Europe some interesting findings emerge regarding the Greek values referring to working behavior. The comparisons revealed that people in Greece attribute significantly more importance to power/achievement, conformity/tradition, among other values [50].

In this working climate, it is possible that several dimensions differ from those of Yildirim and Yildirim [51]. Besides, the instrument creators in their study mentioned that their study had several limitations. Indeed, that study was only conducted with female participants in the nursing, female-dominant, profession and in the largest university hospital in Instabul, Turkey, while in our study a great range of hospitals participated [51]. This fact could also explain the considerable difference in scores between the two studies, ours being significantly higher, suggesting workplace psychological violence. Our study emphasizes the need for further validation studies in different cultural environments, in accordance with the creators of the tool, who stated that "As the tool was developed from data collected from nurses in Turkey it reflects the cultural characteristics of the society in which it was developed. For this reason, it is recommended that this instrument is tested in samples of nurses with different cultural characteristics and with different professional groups".

The modified Greek version of the WPVB questionnaire exhibits excellent validity and reliability and emphasizes the need for developing mobbing measurement instruments culturally adjusted. In that context, special norms could be created for different populations and the phenomenon could be studied

with accuracy. In our study, although the sample was large, it is not absolutely representative of the nursing population (35,420 in Greece) [52]. Some HPs due to work overload were reluctant to participate and all hospitals included are not represented proportionally in the sample. In this context, it is difficult to construct a norm for the entire nurse population. A future well-designed study, with a random and representative sample of Greek HPs, could end up with a norm for the Greek nursing population.

5. The implication to research and practice

The Greek version of the WPVB questionnaire is a valid and reliable instrument to measure mobbing within the Greek population. This instrument can be a valuable tool for HPs and health care providers for use in planning strategies for mobbing provision in Greece. International studies mainly in Turkey reported that this instrument helps to investigate the phenomenon of mobbing and to design appropriate hospital management strategies [4–8,11]. The issue of moral harassment in Greece has not yet been thoroughly explored, but as it emerges from International Studies, it is imperative because it has a negative impact on the quality of life of health professionals and causes problems for both the worker himself and his family and work environment [10,53–55]. Areas of investigation of mobbing are satisfied or dissatisfied with can be identified. This tool can be used as a basis to initiate changes in clinical practice both in a hospital and in community health care working settings.

6. Future research

The Greek version of the WPVB questionnaire can be used as a tool for further investigating of mobbing provided in Greece and obtaining a better understanding of the meaning of mobbing, of the dealing with the phenomenon and of the needs, and of the expectations against mobbing at health professionals. It is anticipated that the Greek version of the WPVB will contribute to further development of the research in the field of health sector service and other working fields in Greece.

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

- 1. Leymann H (1990) Mobbing and psychological terror at workplaces. Violence Vict 5: 119–126.
- 2. Spiridakis M (2009) Power and mobbing in work. Athens, Dionikos (Book in Greek).
- 3. Bakella P, Yiagou E, Brahantini K (2013) Mobbing syndrome effect on nurses' professional life. Hellenic J Nurs Sci 6: 15–21 (article in Greek).
- 4. Yildirim D, Yildirim A (2007) Mobbing in the workplace by peers and managers: mobbing experienced by nurses working in healthcare facilities in Turkey and its effect on nurses. J Clin Nurs 16: 1444–1453.
- 5. Zachariadou T, Zannetos S, Chira SE, et al. (2018) Prevalence and Forms of Workplace Bullying Among Health-care Professionals in Cyprus: Greek Version of "Leymann Inventory of Psychological Terror" Instrument. Saf Health Work 9: 339–346.
- 6. Sahin B, Cetin M, Cimen M, et al. (2012) Assessment of Turkish junior male physicians' exposure to mobbing behavior. Croat Med J 53: 357–366.
- 7. Pai HC, Lee S (2011) Risk factors for workplace violence in clinical registered nurses in Taiwan. J Clin Nurs 20: 1405–1412.
- 8. Erdogan V, Yildirim A (2017) Healthcare professionals' exposure to mobbing behaviors and the relation of mobbing with job satisfaction and organizational commitment. Procedia Comput Sci 120: 931–938.
- 9. Durmus SC, Topcu I, Yildirim A (2018) Mobbing Behaviors Encountered by Nurses and their Effects on Nurses. Int J Caring Sci 11: 905–913.
- 10. Katsilaki EX (2017) Investigation of Mobbing Syndrome and the role of communication in Health Professionals (Doctors & Nurses) at a public hospital. Diploma thesis, EAP.
- 11. Karatza C, Zyga S, Tziaferi S, et al. (2016) Workplace bullying and general health status among the nursing staff of Greek public hospitals. Ann Gen Psychiatry 15: 7.
- 12. Gavrielatos G (2015). The "mobbing" syndrome in specialized doctors and the role of emotional intelligence in dealing with it. EAP, Diploma thesis. Available from: https://apothesis.eap.gr/handle/repo/33752.
- 13. Patsia A, Polychronopoulou A, Sakaretsanou AK (2017). The attitude of nurses in public hospitals for labor intimidation. Qualitative research. Thesis. Technological Educational Institution of Western Greece, School of Health and Welfare Professionals, Department of Nursing.
- 14. Mastora TM (2013). Exploring Nursing Students' Views on Intimidation in 2013: A Phenomenological Study. Thesis. Department of Nursing School of Health and Welfare Sciences. Technological Educational Institute of Epirus. Available from:
- http://apothetirio.teiep.gr/xmlui/bitstream/handle/123456789/547/nsl 2013002.pdf?sequence=1.
- 15. Yildirim D (2009) Bullying among nurses and its effects. Int Nurs Rev 56: 504–511.
- 16. Cinar HG, Korkmaz AC, Yılmaz D (2016) Mobbing in Nursing, Jhum rhythm 2: 89–93.

- 17. da Silva Joao AL, Saldanha Portelada AF (2016) Mobbing and Its Impact on Interpersonal Relationships at the Workplace. J Interpers Violence 2016 Aug 1: 886260516662850.
- 18. Ekici D, Beder A (2014) The effects of workplace bullying on physicians and nurses. Aust J Adv Nurs 31: 24–33.
- 19. Malinauskiene V, Einarsen S (2014) Workplace bullying and post-traumatic stress symptoms among family physicians in Lithuania: an occupation and region-specific approach. Int J Occup Med Environ Health 27: 919–932.
- 20. Najafi F, Fallahi-Khoshknab M, Ahmadi F, et al. (2018) Antecedents and consequences of workplace violence against nurses: A qualitative study. J Clin Nurs 27: e116–e128.
- 21. Hassankhani H, Parizad N, Gacki-Smith J, et al. (2018) The consequences of violence against nurses working in the emergency department: A qualitative study. Int Emerg Nurs 39: 20–25.
- 22. Dikmetaş E, Top M, Ergin G (2011) An examination of mobbing and burnout of residents. Turk Psikiyatri Derg 22: 137–149.
- 23. Serafeimidou A, Dimou M (2016) Workplace bullying with special emphasis in the Greek public sector—A review article. 11th MIBES Conference—Heraklion, Crete, Greece, 22–24 June, 2016,
- 454–473. Available from: http://mibes.teilar.gr/proceedings/2016/Serafeimidou-Dimou.pdf. 24. Pantazis A, George I (2016) Workplace Bullying within Nursing Stuff [Greek]. Hellenic J Nurs 55: 320–328.
- 25. Fountouki A, Ourania P, Theofanidis D (2011) Nursing staff under heavy stress: focus on Greece. A critical review. Int J Caring Sci 4: 11-19.
- 26. Rodríguez-Carballeira A, Escartín Solanelles J, Visauta Vinacua B, et al. (2010) Categorization and hierarchy of workplace bullying strategies: A Delphi survey. Span J Psychol 13: 297–308.
- 27. Koinis A, Velonakis E, Tzavella F, et al. (2017) The Phenomenon of Mobbing in the Greek Health Sector: A pilot study [Greek]. Hellenic J Nurs 56: 233–244.
- 28. Koinis A, Tziaferi SG (2018) The phenomenon of Mobbing among health professionals in a Greek public hospital: A qualitative study. Announcement at 32nd International Congress of Occupational Health (ICOH), Dublin, Ireland, 29 April—04 May, 2018.
- 29. Koinis A, Tzavella F, Velonakis E, et al. (2016) The mobbing in the health sector and its impact on quality of life of health professionals. A pilot study. Announcement at the 6th International FOHNEU Congress "New Occupational Health Horizons", Rotterdam, The Netherlands, 16–18 March, 2016.
- 30. Koinis A, Tzavella F, Velonakis E, et al. (2015) Effects of the phenomenon of mobbing on the quality of life of health professionals, in public and private hospitals of the first and sixth Health Region of Greece. A study protocol. Announcement at the 3rd International Congress on Occupational Health (ICOH)-Global Harmony for Occupational Health: Bridge the World. Seoul, Korea,

- 31. Koinis A, Tziaferi SG (2014) Managing Ethical Harassment in the Workplace at Health Services, organized by the Medical and Nursing Service of the MN. Mesinia Rapporteur at the "Modern Nursing" Conference, Hematology News 9th Cycle, 20–21 September, 2014.
- 32. Drivas S (2002) The syndrome of mobbing at work. Petrol Refineries Chem Ind 9: 8–9.
- 33. Karakioulafi X (2003) Psychological and moral harassment in the workplace: definitions of the problem, institutional treatment and involvement of the employee representation bodies in managing and dealing with them. Labor Rel Rev 32: 21–37.
- 34. Konstantinidis M (2011) Labor harassment: A proposal for research and intervention. Occup Health Saf v.47.
- 35. Mueller R (2000) Basic principles of structural equation modeling. New York, USA: Springer.
- 36. Hu L, Bentler PM (1999) Cut-off criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equat Model 6: 1–55.
- 37. Al-Omari H (2015) Physical and verbal workplace violence against nurses in Jordan. Int Nurs Rev 62: 111–118.
- 38. Jaradat Y, Nielsen MB, Kristensen P, et al. (2016) Workplace aggression, psychological distress, and job satisfaction among Palestinian nurses: A cross-sectional study. Appl Nurs Res 32: 190–198.
- 39. Cheung T, Yip PS (2017) Workplace violence towards nurses in Hong Kong: prevalence and correlates. BMC Public Health 17: 196.
- 40. Al-Shamlan NA, Jayaseeli N, Al-Shawi MM, et al. (2017) Are nurses verbally abused? A crosssectional study of nurses at a university hospital, Eastern Province, Saudi Arabia. J Fam Community Med 24: 173–180.
- 41. Li Z, Yan CM, Shi L, et al. (2017) Workplace violence against the medical staff of Chinese children's hospitals: A cross-sectional study. PloS One 12: e0179373.
- 42. Mantzouranis G, Fafliora E, Bampalis VG, et al. (2015) Assessment and Analysis of Workplace Violence in a Greek Tertiary Hospital. Arch Environ Occup Health 70: 256–264.
- 43. Cortina LM, Magley VJ, Williams JH, et al. (2001) Incivility in the workplace: Incidence and impact. J Occup Health Psychol 6: 64–80.
- 44. Niedhammer I, David S, Degioanni S (2007) Economic activities and occupations at high risk for workplace bullying: Results from a large-scale cross-sectional survey in the general working population in France. Int Arch Occup Environ Health 80: 346–353.
- 45. Jóhannsdóttir HL, Ólafsson RF (2004) Coping with bullying in the workplace: The effect of gender, age, and type of bullying. Brit J Guid Couns 32: 319–333.
- 46. Ortega A, Høgh A, Pejtersen JH, et al. (2009) Prevalence of workplace bullying and risk groups: A representative population study. Int Arch Occup Environ Health 82: 417–426.
- 47. Namie G (2003) Workplace bullying: Escalated incivility. Ivey Bus J 68: 1–6.

- 48. Iftikhar M, Qureshi MI (2014) Modeling the workplace bullying the mediator of "workplace climate-employee health" relationship. J Manage Info 4: 96–124.
- 49. Zhang L, Wang A, Xie X, et al. (2017) Workplace violence against nurses: A cross-sectional study. Int J Nurs Stud 72: 8–14.
- 50. Davidoff F, Batalden P, Stevens D, et al. (2008) SQUIRE Development Group Publication Guidelines for Improvement Studies in Health Care: Evolution of the SQUIRE Project. Ann Intern Med 149: 670–676.
- 51. Dilek Y, Aytolan Y (2008) Development and psychometric evaluation of workplace psychologically violent behaviors instrument. J Clin Nurs 17: 1361–1370.
- 52. Economou C (2010) Greece: Health system review. Health Syst Transit 12: 1–180.
- 53. Pinar T, Acikel C, Pina, G, et al. (2015) Workplace violence in the health sector in Turkey: A national study. J Interpers Violence 32: 2345–2365.
- 54. AbuAlRub RF, Al Khawaldeh AT (2014) Workplace physical violence among hospital nurses and physicians in underserved areas in Jordan. J Clin Nurs 23: 1937–1947.
- 55. Hamdan M, Hamra AA (2015) Workplace violence towards workers in the emergency departments of Palestinian hospitals: a cross-sectional study. Hum Resour Health 13: 28.

Instructions for Authors

Essentials for Publishing in this Journal

- 1 Submitted articles should not have been previously published or be currently under consideration for publication elsewhere.
- 2 Conference papers may only be submitted if the paper has been completely re-written (taken to mean more than 50%) and the author has cleared any necessary permission with the copyright owner if it has been previously copyrighted.
- 3 All our articles are refereed through a double-blind process.
- 4 All authors must declare they have read and agreed to the content of the submitted article and must sign a declaration correspond to the originality of the article.

Submission Process

All articles for this journal must be submitted using our online submissions system. http://enrichedpub.com/. Please use the Submit Your Article link in the Author Service area.

Manuscript Guidelines

The instructions to authors about the article preparation for publication in the Manuscripts are submitted online, through the e-Ur (Electronic editing) system, developed by **Enriched Publications Pvt. Ltd**. The article should contain the abstract with keywords, introduction, body, conclusion, references and the summary in English language (without heading and subheading enumeration). The article length should not exceed 16 pages of A4 paper format.

Title

The title should be informative. It is in both Journal's and author's best interest to use terms suitable. For indexing and word search. If there are no such terms in the title, the author is strongly advised to add a subtitle. The title should be given in English as well. The titles precede the abstract and the summary in an appropriate language.

Letterhead Title

The letterhead title is given at a top of each page for easier identification of article copies in an Electronic form in particular. It contains the author's surname and first name initial .article title, journal title and collation (year, volume, and issue, first and last page). The journal and article titles can be given in a shortened form.

Author's Name

Full name(s) of author(s) should be used. It is advisable to give the middle initial. Names are given in their original form.

Contact Details

The postal address or the e-mail address of the author (usually of the first one if there are more Authors) is given in the footnote at the bottom of the first page.

Type of Articles

Classification of articles is a duty of the editorial staff and is of special importance. Referees and the members of the editorial staff, or section editors, can propose a category, but the editor-in-chief has the sole responsibility for their classification. Journal articles are classified as follows:

Scientific articles:

- 1. Original scientific paper (giving the previously unpublished results of the author's own research based on management methods).
- 2. Survey paper (giving an original, detailed and critical view of a research problem or an area to which the author has made a contribution visible through his self-citation);
- 3. Short or preliminary communication (original management paper of full format but of a smaller extent or of a preliminary character);
- 4. Scientific critique or forum (discussion on a particular scientific topic, based exclusively on management argumentation) and commentaries. Exceptionally, in particular areas, a scientific paper in the Journal can be in a form of a monograph or a critical edition of scientific data (historical, archival, lexicographic, bibliographic, data survey, etc.) which were unknown or hardly accessible for scientific research.

Professional articles:

- 1. Professional paper (contribution offering experience useful for improvement of professional practice but not necessarily based on scientific methods);
- 2. Informative contribution (editorial, commentary, etc.);
- 3. Review (of a book, software, case study, scientific event, etc.)

Language

The article should be in English. The grammar and style of the article should be of good quality. The systematized text should be without abbreviations (except standard ones). All measurements must be in SI units. The sequence of formulae is denoted in Arabic numerals in parentheses on the right-hand side.

Abstract and Summary

An abstract is a concise informative presentation of the article content for fast and accurate Evaluation of its relevance. It is both in the Editorial Office's and the author's best interest for an abstract to contain terms often used for indexing and article search. The abstract describes the purpose of the study and the methods, outlines the findings and state the conclusions. A 100- to 250-Word abstract should be placed between the title and the keywords with the body text to follow. Besides an abstract are advised to have a summary in English, at the end of the article, after the Reference list. The summary should be structured and long up to 1/10 of the article length (it is more extensive than the abstract).

Keywords

Keywords are terms or phrases showing adequately the article content for indexing and search purposes. They should be allocated heaving in mind widely accepted international sources (index, dictionary or thesaurus), such as the Web of Science keyword list for science in general. The higher their usage frequency is the better. Up to 10 keywords immediately follow the abstract and the summary, in respective languages.

Acknowledgements

The name and the number of the project or programmed within which the article was realized is given in a separate note at the bottom of the first page together with the name of the institution which financially supported the project or programmed.

Tables and Illustrations

All the captions should be in the original language as well as in English, together with the texts in illustrations if possible. Tables are typed in the same style as the text and are denoted by numerals at the top. Photographs and drawings, placed appropriately in the text, should be clear, precise and suitable for reproduction. Drawings should be created in Word or Corel.

Citation in the Text

Citation in the text must be uniform. When citing references in the text, use the reference number set in square brackets from the Reference list at the end of the article.

Footnotes

Footnotes are given at the bottom of the page with the text they refer to. They can contain less relevant details, additional explanations or used sources (e.g. scientific material, manuals). They cannot replace the cited literature.

The article should be accompanied with a cover letter with the information about the author(s): surname, middle initial, first name, and citizen personal number, rank, title, e-mail address, and affiliation address, home address including municipality, phone number in the office and at home (or a mobile phone number). The cover letter should state the type of the article and tell which illustrations are original and which are not.

Note