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A Visible Light-Responsive Mixed-Valence Bimetallic Eu−Zr 
MOFBased Nanoarchitecture toward Efficacious H2O2 and 

H2 Production

Srabani Dash,# Suraj Prakash Tripathy,# Satyabrata Subudhi, and Kulamani Parida

A B S T R A C T

A mixed-valence bimetallic Eu/Zr MOF has been fabricated via a one-step solvothermal method by 

incorporating Eu3+ ions into the Zr-MOF,thereby making a single-component photocatalyst that can be 

utilized towardrobust photon utilization from the visible light spectrum for the photocatalyticproduction 

of green energy like H2 and H2O2. The one-step synthesized bimetallicEu/Zr-MOF exhibits more visible 

light captivation properties along withimproved charge carrier separation, confined band gap, and 

excellent ligand-tometal charge transfer (LMCT) because of the existence of an 

interconvertibleEu3+/Eu2+ ion pair compared with the pristine MOF counterparts. The addition ofEu 

ions directed to an upsurge in the electron density around Zr4+ ion, as seenfrom XPS analysis. Moreover, 

the introduction of Eu3+ enhanced the excitonsegregation, as seen from PL and EIS analyses, thereby 

leading to superiorcatalytic performances. An increased photocatalytic H2 generation efficacy of331.26 

μmol h−1 (ACE = 2.42%) was demonstrated by the synthesized EZUNH-2 MOF, which is approximately 

three times greaterthan pristine MOFs. As a result, the bimetallic EZUNH-2 MOF can be easily utilized as 

a robust photocatalyst that has increasedinclinations to produce H2O2 at 35.2 μmol h−1, around 4 times 

more than that of the parent material. Consequently, the one-potsynthesized bimetallic MOF paves a 

suitable mechanistic pathway for paramount performance toward photocatalytic H2O2 and 

H2production.

1. INTRODUCTION

The usage of hydrogen peroxide (H2O2) as an environmentally friendly oxidant in industries like 
chemical synthesis, food andpaper manufacturing, medical decontamination, and wastewater 
purification has recently attracted a lot of attention fromresearchers on the front lines.1,2 The water 
solubility andreleasing H2O as a byproduct are the major factors to makeH2O2 as an energy carrier for 
future generations.3−5 Severaltechniques have been invented to produce H2O2, including 
theanthraquinone process, alcohol oxidation, direct synthesis fromthe mixture of oxygen and hydrogen 
gases, and electrochemicalsynthesis. But some of the drawbacks of the synthesis methodslisted above 
include the need for a lot of energy and solvents,as well as the increased risk of explosion brought on by 
thecombination of H2 and O2 gases. An effective and low-energygreen method for producing H2O2 is 
therefore highlydesired.6,7 In recent years, the photocatalytic H2O2 productionhas received massive 
attention because of the use ofphotocatalysts to accomplish the reaction with O2-saturatedH2O, alcohol, 
and light energy.8−10 In addition, water splittingvia a photon-assisted hydrogen evolution reaction has 
beenperformed to assess the semiconducting materials’ photocatalytic energy production capabilities. 
Following theinnovation of Fujishima and Honda in hydrogen productionfrom H2O utilizing TiO2 
semiconductor under light irradiation, which aimed to lower the world’s energy demand, the production 
of H2 from photocatalytic water splitting reaction has developed into an active study area. Moreover, 
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toovercome the current energy crisis, hydrogen (H2) has drawn a lot of interest as a clean, sustainable 
energy substitutefor nonrenewable energy sources. As a result, owing to its lowcost and simple 
procedure, the photocatalytic hydrogengeneration via water splitting has been considered a 
promisingmethod.11−13 Some bimetallic MOFs like Ce−Co MOF, Ni−Ti MOF, and Ce−Zr MOF show 
excellent hydrogen evolutionefficiency as photocatalysts.14−16
The current situation of an expanding world population,accompanied by the quick industrial 
development andimpending fossil fuel depletion, has prompted efforts to findan environmentally 
favorable and affordable substitute forrenewable energy as well as sustainable catalysis. In order 
toovercome such issues, the development of a suitable photocatalyst with a tunable band structure, 
excellent photostability,and greater exciton separation ability is a major challenge.

Since many years, different scientific groups have been enduring multiple semiconducting 
photocatalysts to get oversuch problems.17−19 Yet, in recent times, organic−inorganichybrids, also 
known as metal-organic frameworks (MOFs),have become extremely well-liked because of their 
exceptionalbenefits, which include high specific surface area, flexiblefunctionalization, high porosity, 
and tailored compositionslinked to an infinite variety of organic linkers and metalclusters, resulting in a 
broad range of potential MOFnanostructures. However, pristine MOFs have some limitations like faster 
recombination of charge carriers, lack of asuitable band gap, and low light absorption tendency, 
whichmakes them inadequate photocatalysts. Hence, to conquerthese, some modifications have been 
involved, such asfunctional group introduction, guest molecule introduction,and making heterojunction 
with other photocatalysts.17,18,20However, composite materials have some limitations, likereduction 
of surface area, undesirable active site coverage,deficient interaction among photocatalysts, lower 
chargecarrier separation, etc. In recent years, scientists have beenobserving paths to surmount these 
difficulties in making composite photocatalysts, which have created an extensive need for the 
production of single-component MOF-basedphotocatalysts.21,22 Nowadays, single-component MOF-
basedphotocatalysts are in high demand, so researchers are exploringa variety of strategies to produce 
these type of photocatalysts,with tailored functionalities and tuned band structures for awide range of 
applications.12,23−25Generally, to overcome the above-mentioned issues, variousmixed-metal MOFs 
such as UiO-66-NH2 (Zr/Hf), UiO-66-NH2 (Pt/Sn), UiO-66 (Ti/Zr), MOF-NH2 (Fe/Ti), UiO-66-NH2 
(Ce/Zr), etc. were reported.15,26−28 Moreover, thelanthanide-based metal−organic frameworks (Ln-
MOFs),especially Eu3+, are interesting due to their adaptablecoordination geometry and distinctive 
luminescent andoptical-electrical properties. In current years, the applicationof Ln-MOFs as 
photocatalysts has gained significant interestdue to their unique physicochemical as well as 
surfacefunctionalization properties.29,30 They also show easilyinterconvertible oxidation states of the 
Europium ion (Eu3+/Eu2+), so the Eu ion insertion presents as a superior alternativeover other metals 
for MOF fabrication. Yet the pristine EuMOF is not stable enough or has insufficient excitonsegregation 
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capabilities; therefore, to achieve optimal photocatalytic activity and stability, it is crucial to 
optimallyintroduce these redox mixed valence Eu3+/Eu2+ ions intowater-stable frameworks, such as 
visible-light-responsive functionalized UiO-66 series Zr-based MOFs. The presence of easily 
interconvertible Eu2+ and Eu3+ oxidation states in anaqueous stable framework such as visible light-
active UiO-66series Zr-based MOFs promotes superior photocatalyticactivity and stability.32 Since the 
incorporated metal ionsdetermine their properties, bimetallic MOFs are expected tohave new 
functionalities in addition to their structuralcomplexity. A second hetero metal node can be added to 
thesame framework to create synergistic effects that improve itsinherent qualities.32,33 The integration 
of Eu3+ into the UiO66-NH2 framework not only builds a stable and porousstructure but also regulates 
the energy levels of the MOFs. Wehave chosen the Eu3+ ion as the constituent metal due to itslow 
reduction potential (Ered (Eu3+ /Eu2+) = −0.35 V vs NHE)and the ability of the resulting Eu2+ ion to be 
reconverted easilyto its initial state.34 Furthermore, it is very difficult to find aphotocatalyst that meets 
the thermodynamic requirements forphotocatalytic water oxidation (At pH = 7, O2/•O2−/H2O2 =−0.33 
V and +0.69 V, OH−/OH• = 1.99 V). The key findings for a one-pot synthesized bimetallic Eu/Zr MOF-
basednanoarchitecture toward visible light-supported H2O2 production and H2 evolution have been 
presented in the currentinvestigation. After extensive research on the neat Zr-MOF and its bimetallic 
MOF, such as (Eu/Zr) UiO-66-NH2 [EZUNH],the composite showed improved exciton segregation 
androbust LMCT, accompanied by the mixed valency states ofEu3+ and Eu2+, which endorse its 
excellent photocatalyticoutput. Moreover, due to the strong bond of Zr−O, thepristine MOF with Zr as 
the metal center has high stabilitytoward acid−base, aqueous, and thermal changes, and a similarimpact 
can be inherited in the EZUNH MOF.35 The currentwork represents the one-pot synthesized EZUNH 
bimetallicMOF-based nanomaterials toward photocatalytic H2O2 and H2production. Among the 
prepared bimetallic MOFs, theEZUNH-2 exhibits boosted photocatalytic H2 production upto 331.26 
μmol h−1 and H2O2 production up to 35.2 μmol h−1,which is around 3-fold and 4-fold higher than that 
of the pristine MOF.

2. MATERIALS AND METHODS
2.1. Chemicals Used. Several chemicals, for example,zirconium chloride (ZrCl4, 99.99%), 2-
aminoterephthalic acid(BDC-NH2, 99%), europium(III) chloride hexahydrate(EuCl3.6H2O, 99.99%) 
Nafion-117 (∼5% in lower aliphaticalcohol/water mixture), and potassium bromide (KBr, 99.5%)were 
bought from Sigma-Aldrich. In addition, sodium sulfate(Na2SO4, 99%), methanol (MeOH, 99%), 
isopropanol (99%),



and N,N-dimethylformamide (DMF, 99.8%) were purchased  from Merck. All the chemicals involved 
were used in several reactions.

2.2. Fabrication of Photocatalyst. 2.2.1. Pristine MOFs.The UiO-66-NH2 MOF was prepared by 
following asolvothermal approach by procuring an equimolar ratio ofmetal salts (ZrCl4, 2 mmol) and 
linkers (ATA, 2 mmol), asdescribed earlier.36,37 First, with DMF (40 mL), the metal saltand linker were 
added individually with continued stirring for 1h. Then, both solutions were mixed together and further 
stirredfor 1 h. Afterward, the mixture solution was transferred into aTeflon-lined stainless steel vessel 
and kept for solvothermaltreatment (120 °C for 24 h). After the reaction time was over,the reactor vessel 
was allowed to cool down to roomtemperature. Subsequently, the pore activation of the productwas done 
by a solvent exchange method using methanol for 24h. The products were then collected through 
centrifugationand dried overnight at 80 °C. Last, the obtained yellow-coloredsample was named ZUNH.
2.2.2. Bimetallic Eu/Zr-UiO-66-NH2 MOF. The Eu/Zr bimetallic MOF was fabricated in an analogous 
way to theparent ZUNH MOF through a one-step solvothermal method(120 °C for 24 h), as illustrated in 
Scheme 1. Herein, thisprocess differs from the ZUNH fabrication method by usingmixed metallic salts 
with variable molar concentrations as Eu0.2 mmol/Zr-1.8 mmol, Eu-0.4 mmol/Zr-1.6 mmol, and Eu0.6 
mmol/Zr-1.4 mmol, which were termed as EZUNH-1,EZUNH-2, and EZUNH-3, respectively. Then, to 
each ofthese salt mixtures, DMF (40 mL) was added. Further, themetal salts and linker were added 
individually with continuousstirring for 1 h. Then, after both solutions were mixed together,they were 
further subjected to stirring for 1 h. Afterward, themixture solution was transferred into a Teflon-lined 
stainlesssteel vessel and kept for solvothermal treatment (120 °C for 24h). After the reaction time was 
over, the reactor vessel wasallowed to cool down to room temperature. Subsequently, thepore activation 
of the product was done by a solvent exchangemethod using methanol for 24 h. The detailed 
characterizationmethods involved and other experimental processes followed in this work are reported 
in the Supporting Information(Experimental Techniques).

2.2.3. Photocatalytic H2O2 and H2 Production. Thesynthesized samples were subjected to analysis of 
the photocatalytic activity toward H2O2 production under an O2-saturated atmosphere with 2 h of 
visible light illumination (λ ≥420 nm). A suspension solution was prepared by adding 19 mL of 
deionized water (DI) and 1 mL of isopropanol (IPA) with 20 mg of photocatalyst, and then, the 
suspension underwent anultrasonication process for about 10 min for proper dispersionof the contents. 
Subsequently, the solution was kept under O2purging for 30 min in the presence of light to attain an 
O2saturated atmosphere. After the reaction time, a clear solutionwas obtained by centrifugation of the 
suspension solution.Thereafter, to 1 mL of the resulting solution, 2 mL of 0.1 M KIsolution and 0.05 mL 
of 0.01 M ammonium molybdatesolution were added to change the colorless sample into alight-yellow 
color. Finally, the concentration of the producedphotocatalytic H2O2 was evaluated through a 
Uv−visiblespectrophotometer
Furthermore, the prepared nanomaterials were toward the photocatalytic evolution of hydrogen gas. In 
this process, a closed quartz batch-type reactor (100 mL) was usedto acquire the photocatalytic H2 
production efficacy of thefabricated photocatalysts, such as pure ZUNH and bimetallicEZUNH MOFs. 
Here, 20 mg of the as-synthesized photocatalysts was taken in the photoreactor with 20 mL of 10% V/V 
MeOH-water mixture, and the visible light source (Xenonarc lamp, 300 W, λ ≥ 420 nm) was irradiated 
for 1 h. Thesubstances in the reactor were continuously stirred to promotea uniform distribution and 
avoid particle aggregation duringthe reaction time. Formerly. by utilizing the Xe lamp, suspension 
mixture was thoroughly bubbled for 30 min under N2 gas to eradicate the dissolved gases present. The 
gaseous mixtures that emerged were agitated via direct water displacement and investigated using gas 
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chromatography/GC (GC-7890B, Agilent Technologies) tailored with 5 Åmolecular sieves and a 
thermal conductivity detector (TCD).Photocatalytic experiments were performed in triplicate 
tominimize experimental errors.

3. RESULTS AND DISCUSSION
3.1. Physicochemical Characterizations. Figure 1a illustrates a PXRD (powder X-ray diffraction) 
pattern analysis,which was executed to construe the formation and crystallographic nature of all the 
synthesized photocatalysts. Typically,the diffraction pattern of the pristine MOF ZUNH suggestshigh 
crystallinity. Remarkably, the EZUNH MOFs show thecharacteristic XRD pattern, suggesting the 
conservancy ofcrystallographic peaks of the pristine grid framework upon theinsertion of Eu ions. The 
Zr4+ and Eu3+ competitivelycoordinate with the ligand to produce a disrupted and slightly reduced 
crystallinity in bimetallic EZUNH MOFs.

Consequently, the diffraction at 7.35° and 8.41°, corresponding to the (111) and (200) planes, 
respectively, gradually decreases as the amount of Eu3+ ions increases. Additionally,the diffraction 
peaks shown in Figure 1a exhibit a reduction inthe intensity of peak, accompanied by broadening of 
peakswith respect to the parent ZUNH, especially for the twonoticeable Zr-cluster peaks, signifying the 
Eu ions’ insertioninto the lattice of MOF and eventually instigating the slightreduction in Zr-Oxy 
clusters.15,38Additionally, the FT-IR (Fourier transform infrared) studywas performed to detect 
various functional groups by means oftheir modes of vibration existing in the pristine ZUNH 
andbimetallic EZUNH MOF, as illustrated in Figure 1b. Theobserved peaks at 3475 and 3340 cm−1 
represent the -Nh2groups of both ZUNH and EZUNH, which are accompaniedby asymmetrical and 
symmetrical vibrational stretching modes,respectively. In the frequency region, the 1640 and 1245 
cm−1bands determine the vibrational bending of N−H andstretching of the C−N bond of the aromatic -
NH2 groupsexisting in the ATA linkers, respectively. Furthermore, thesmall vibrational band at 1511 
cm−1 represents the C�Cmoiety of the benzene ring, whereas, the vibrational peaks observed around 
485, 763, 662 cm−1 are accompanied bymetal-(OC) asymmetric stretching, C�C stretching of 
thearomatic ring, and car boxylate O�C�O bending, respectively.12,39 Typically, from the FT-IR 
analysis results of bimetallic EZUNH-1, 2, and 3 MOFs, it has been observedthat the nature is quite 
similar to pristine ZUNH. Hence, theanalysis outcome suggests an equivalent chemical 
bondingatmosphere and indistinguishable functional groups in the frameworks along with it signify no 
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noticeable difference in the peak positions. The FT-IR results support the earlier reported results.32,40
Textural properties of the synthesized MOFs were persistent through the (BET) surface area technique 
with the support ofthe N2 adsorption/desorption isotherm method. Figure S1depicts the bimetallic 
EZUNH-2 MOF’s BET adsorption/desorption curve, which is similar to the Type-IV isotherm 
thatindicates the microporous and mesoporous nature of theframework. Herein, the insertion of Eu ions 
into the frameworkof ZUNH assisted in the diminution of the BET surface area,i.e., 533.5 m2 g−1 as 
given in Figure S1. However, thephotocatalytic yield does not distress with the reduction insurface area 
due to the synergistic effect of bimetallic ions.Regardless, the insertion of Eu ions does not affect the 
rigidityof the framework structure, which shows that the isothermpattern of the bimetallic MOF 
persisted similarly to that of theparent ZUNH MOF.18
Chemical states and surface elemental compositions of the prepared photocatalysts were investigated 
through X-rayphotoelectron spectroscopy (XPS). Herein, for EZUNH-2bimetallic MOF, the XPS 
survey spectra have been depicted inFigure S2, which validates the presence of Eu, Zr, C, N, and O,as 
confirmed by the EDAX and elemental mapping analysis.Moreover, from the XPS analysis of the 
fabricated bimetallicEZUNH-2 MOF, the presence of each element’s spectra wascompiled and 
deconvoluted, as illustrated in Figure 2b−f.From the deconvoluted spectra, the C 1s present in EZUNH-
2exhibits peaks at 284.54, 285.12, and 288.44 eV, whichresemble the carbon atoms of the BDC-NH2 
linker thatcorrespond to C�C, C−NH2, and O�C−O, respectively.13Also, for N 1s, the deconvoluted 
XPS peaks observed at

399.18, 400.15, and 402.03 eV relate to the -NH2 functionalized groups of linkers such as −NH2 and 
−NH3 +,respectively, which is almost analogous to the previouslyanalyzed N 1s spectra for pristine 
ZUNH MOF. Besides, thedeconvoluted O 1s XPS spectra found at 530.01, 531.59, and533.30 eV 
signify lattice O, metal-O, and surface-adsorbedH2O molecule, respectively, for the prepared 
bimetallicEZUNH-2 MOF. Additionally, the deconvoluted peaks forZr found at 182.69 and 185.04 eV 
represent the two spin statesof Zr, such as 3d5/2 and Zr 3d3/2 in the EZUNH-2 sample. Thedownshifting 
of Zr spin states binding energy demonstrates that the electron density of Zr4+ increases due to the 
transfer ofelectrons from lower oxidation species (Eu3+) in the bimetallicEZUNH-2 MOF. In the 
deconvoluted peaks, the XPS of the Eu peak comprises dual sets corresponding to the states Eu 3d5/2 
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and Eu 3d3/2. Herein, the deconvoluted peaks of Eu correspond to the 3+ oxidation state of Eu 3d5/2 and 
Eu 3d3/2,respectively; also, the presence of the 2+ oxidation state of Euions has been confirmed from the 
plotted data. From thedeconvoluted plot of Eu, the existence of both the 3+ and 2+oxidation states in the 
MOF has been clearly perceived,suggesting the formation of mixed valency MOF. Moreover,the XPS 
analysis outcome confirms the formation of a singlecomponent bimetallic EZUNH MOF along with it 
unveils therole of Eu3+/Eu2+ redox pair. The deconvoluted peak values ofXPS confirm the pristine 
ZUNH and bimetallic EZUNH-2, along with their corresponding chemical environments, arepresented 
in Table 1 for lucid comprehension. Additionally,the ICP-OES analysis result confirms the existence of 
Eu:Zr inthe bimetallic MOFs with different molar ratios, such asEZUNH-1 (0.08:0.84), EZUNH-2 
(0.17:0.76), and EZUNH-3(0.26:0.67), respectively 

3.2. Morphological Studies. To study the surface morphology and elemental composition of the 
pristineZUNH and one-pot synthesized mixed-metallic EZUNH-2MOF, the FESEM (field-emission 
scanning electron microscopy) and HRTEM (high-resolution transmission electronmicroscopy) 
analyses were carried out. The FESEM image(Figure 3a) reveals the morphology of EZUNH-2, which 
isquite similar to that of the pristine MOF, as shown in FigureS3a. Additionally, the analogous 
morphological features of themixed-metallic MOF substantially corroborate the PXRDresults, 
indicating a framework structure similar to that ofpristine MOFs. From the HRTEM images given in 
Figure 3b,the octahedral morphology of EZUNH-2 was distinctlyperceived at 20 nm scales as depicted. 
Also, it is significantlyobserved that the morphology of the bimetallic MOF is wellsupported by the 
pristine MOF (Figure S3b). Herein, theaddition of Eu into the Zr-framework significantly does notaffect 
the crystal structure, which specifies the similarmorphology of the synthesized bimetallic MOF. The 
parentZUNH MOF has high sensitivity toward the electron beams;also, the bimetallic framework 
exhibits a similar property.However, it is difficult to find high-quality HRTEM images aswell as a well-
defined SAED pattern. The SAED analysispattern given in Figure 3c corresponds with the neat 
ZUNHMOF, as reported formerly by us.17 Furthermore, the elementalcolor mapping (Figure 3e−j) and 
EDS (Figure 3d) outcomesoffer extra sustenance to the existence of C, O, N, Eu, and Zrelements in the 
EZUNH-2 bimetallic framework, which is alsoconfirmed by XPS analysis.

3.3. Optical Characterization. The optical properties of the prepared photocatalysts were analyzed 
through Uv−visiblediffuse reflectance spectra (UV-DRS) and are shown in Figure4a. The two intense 
bands obtained at 265 and 365 nm were



associated with ZUNH, which are attributed to the lone pair  electron n-π* transitions present in the -
NH2 group of theATA linker and the π−π* transitions overlapping the ATAlinker accompanied by Zr−O 
cluster absorption bands,respectively.15,47 Additionally, the similar bands in thebimetallic EZUNH 
MOFs imply the suitable introduction of Eu ions into the ZUNH framework structure. The optical band
gaps of the materials were evaluated by following the Kubelka−Munk equation, as given below in eq 1.

Herein, α indicates proportionality constant, h represents Planck’s constant, ν specifies the frequency of 
incident light, Asignifies the light absorption coefficient, and Eg represents the

optical band gap, respectively. Additionally, the parameter “n”describes the probable reduction of 
electronic transitions withn = 1, 3, 4, and 6, which correspond to allowed directtransition, forbidden 
direct transition, allowed indirecttransition, and forbidden indirect transition, respectively.Herein, the 
fabricated mixed metallic MOF and pristineMOF exhibited allowed indirect transition (n = 4).16 
Theoptical band gap of ZUNH was calculated as 2.67 eV. Also, thecalculated band gap energy for the 
synthesized EZUNHbimetallic MOFs were 2.63, 2.59, and 2.52 eV for EZUNH-1,EZUNH-2, and 
EZUNH-3 by varying Eu percentage,respectively. The Tauc plots of the prepared photocatalystsare 
given in Figure S4. It is fairly evident that the addition ofEu ions in their mixed valency states (Eu2+ and 
Eu3+) accelerates the process of excellent ligand-to-metal charge transfer (LMCT) and that the 
enhancement of their light absorption tendency is a result of the reduction of the optical band gap, which 
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in turn improves photocatalytic performance.38
The photoluminescence (PL) analysis was carried out to reveal the migration and separation efficacy of 
photogeneratedexcitons. Usually, the lower intensity of PL peaks indicatessuperior separation of 
exciton pairs, which results in higherphotocatalytic activity. From the resulting PL spectra plot,EZUNH-
2 shows substantially weaker fluorescence emissionintensity compared to the pristine ZUNH and the 
other metal-doped composites such as EZUNH-1 and EZUNH-3,which explains the lowering in the 
recombination rate of photogenerated excitons, as illustrated in Figure 4b. Also, the Zr4+ has been 
substituted by some Eu3+ content, which exhibitsa superior electron trapping tendency with a slight red 
shift ofthe emission peak observed that is associated with thenarrowing effect of Eu doping.48,49 
Moreover, the timeresolved photoluminescence (TRPL) study of the neat ZUNH and bimetallic 
EZUNH-2 MOF was used to investigatethe exciton lifetime. This analysis is illustrated in Figure S5 
andTable S1, which are adapted to a biexponential modelequation, as stated in eq 2.

where A stands for amplitude, τ is the exciton life span of each individual component, and R is the 
normalized emissionintensity. Here, the extended lifetime τ2 and short lifespan τ1reflect the 
nonradiative relaxation mechanism of light excitonsand radiative recombination, respectively. Herein, 
the averagelifetime (τavg) can be evaluated to explicate the whole TRPLcharacteristics of both 
exponential decays by using eq 3.

For ZUNH and EZUNH-2 MOFs, the excited state lifetimes have averages of 0.504 and 0.533 ns, 
respectively. This resultincreases the photocatalytic efficiency and supports the PLexperimental results 
by explaining EZUNH-2 longerexciton than due charge antirecombination.37,50
Electrochemical The Mott−Schottky (MS) study was performed to investigate the band position and 
charge transfer path in the mixed metallic MOF,as illustrated in Figure 5a,b. The obtained flat band 
potential(Efb) from the MS plot is a fundamental parameter to obtainthe band edge potentials and paths 
followed by thephotogenerated e−/h+ in a semiconductor photocatalyst.Here, the flat band potentials of 
ZUNH and EZUNH-2 are−0.73 and −0.68 eV, respectively, in contrast to the Ag/AgClelectrode, which 
was evaluated by extrapolating the C2− = 0curve. Subsequently, the CB of ZUNH and EZUNH-2 
werefound by following eq 4.

In MS analysis, the pristine ZUNH and bimetallic EZUNH2 show a positive slope, which endorses the n-
type behavior of both the prepared MOFs. Furthermore, it is relatively evidentthat the n-type 
characteristic of the neat ZUNH was inheritedin the bimetallic MOF. Moreover, the slope of the MS 
graphwas inversely proportional to the charge carrier density. So, thereduction in the slope of EZUNH-2 
was supported by highercarrier density, which was calculated using the eq 5.



where kb represents the Boltzmann’s constant, E signifies the applied potential, T is the absolute 
temperature, C shows thespace charge capacitance, Nd is the donor density, Na exhibitsacceptor density, 
and q represents the electronic charge. ϵ0 isthe permittivity in vacuum, and ϵ is the dielectric constant 
ofthe photocatalyst. A positive shift of 0.05 eV was observed inthe flat band potential of EZUNH-2 with 
respect to pristine ZUNH, signifying the enhanced charge carrier density in the mixed metallic MOF 
(containing the Eu redox couple). Hence,this higher carrier density promotes the boosted 
photocatalyticresult in the bimetallic EZUNH-2 MOF. Moreover, from theEfb values, the band structure 
of parent ZUNH (VB = 2.03 eV,CB = −0.64 eV) and bimetallic EZUNH-2 (VB = 2.0 eV, CB =−0.59 eV) 
vs Ag/AgCl was obtained by using eq 5 in the NHEscale. Furthermore, the VB and CB values were 
changed in theNHE scale and are illustrated in mechanism Scheme 2. It hasbeen evidently observed that 
the CB is slightly shifted towardVB in EZUNH-2 before a minor variation in the actual VBposition, 
pointing toward a robust and effective LMCT inEZUNH-2 MOF rather than pure ZUNH.51
Also, from electrochemical impedance spectroscopy (EIS)analysis, the effective separation and 
migration of chargecarriers in the mixed metallic MOF were discovered. Basically,the smaller lower 
interfacial charge transfer resistance refers tothe semicircular arc diameter, which exhibited superior 
transferof charge carriers in the material. Figure 5c exhibits theEZUNH-2 composite that shows a quite 
reduced semicirculararc diameter compared to the pristine ZUNH MOF thatrecommends the 
antirecombination of charge carriers, whichindicates improved electrical conductivity of the 
bimetallicEZUNH-2 MOF.50,52,53 The EIS outcome of the bimetallicEZUNH-2 MOF was well 
supported by the PL studies. Inaddition, current versus potential measurements (LSV) wereperformed to 
analyze the photogenerated charge carriertransfer and the mechanism of the photocatalyst. 
Thisinvestigation was performed for the parent ZUNH and allthe bimetallic EZUNH MOFs at 5 mV s−1 
in an appropriatepotential range, as depicted in Figure S6. The pristine ZUNHMOF produces an anodic 
photocurrent, which represents an ntype feature. Also, the bimetallic EZUNH MOFs exhibitanalogous 
characteristics, possessing enhanced photocurrentcompared to the pristine MOF
At last, the transient photocurrent investigation was executed for the ZUNH and EZUNH-2 MOFs. 
Theexperiment was accomplished under alternative cycles in darkand visible light (λ ≥ 420 nm) 
irradiation environments toexhibit the boosted separation efficiency of exciton pairs.Herein, the 
analysis result was well established with theproduction of photocurrent, which mainly comprises 
thediffusion of photogenerated e−s to the back contact, and theconsumption of h+s takes place by the 
hole scavengers presentin the electrolyte solution. As indicated in Figure 5d, theEZUNH-2 MOF 
exhibited increased transient current, whichsignifies an enhanced lifetime of the excitons in the 
bimetallicMOF than in the pristine MOF. This was accredited to theeffective separation of 
photoexcitons or lower recombinationrate promoted through the Eu ion insertion into the 
ZUNHframework, and this eventually improves the photocatalyticactivity. Moreover, the transient 
photocurrent investigationoutcomes validate the PL and EIS results, as reported earlier.

4. PHOTOCATALYTIC PERFORMANCE
The photocatalytic behaviors of the prepared samples were analyzed by executing the hydrogen 
peroxide (H2O2) andhydrogen (H2) production reactions under visible lightirradiation. Primarily, the 
H2O2 production reaction wasexecuted in an O2-saturated atmosphere with 2 h of visiblelight (λ ≥ 420 
nm) illumination under ambient conditions. Butthere was no H2O2 production observed in the absence 
of acatalyst or light, which explains that the catalysts and light are
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he key factors for the reaction to occur. The H2O2 production rate of pristine ZUNH was found to be 8.52 
μmol h−1. Herein,among the prepared bimetallic photocatalysts, the EZUNH-2MOF shows maximum 
H2O2 production rate (35.2 μmol h−1),as shown in Figure 6a. Similarly, a series of experiments 
wasperformed for H2O2 production of EZUNH-1 and 3 MOFs,where the obtained outcomes were 27.8 
and 18.9 μmol h−1respectively. Among all the photocatalytic H2O2 productionresults by the prepared 
materials, it was observed that thebimetallic MOFs show significantly greater photocatalyticactivity 
than the pristine ZUNH, which was attributed totheir enhanced light absorption behavior and charge 
carrierantirecombination capacity due to the presence of Eu ions.
The photocatalytic activity of the synthesized bimetallic MOF (EZUNH-2) was four times greater than 
that of the pristineZUNH MOF. Furthermore, the reusability experiment of thematerial indicates that the 
EZUNH-2 MOF exhibits photostability for up to four successive cycles, as depicted in Figure6b. 
Additionally, the O2 dependency was studied for thephotocatalytic H2O2 production by EZUNH-2 
bimetallicMOF, and under Ar and O2 gas purging, two separatereactions were executed, which resulted 
in a very smallquantity of H2O2 production taking place in the Aratmosphere, as shown in Figure 6c. 
Thus, it appears that theexistence of an O2 atmosphere is necessary for the photocatalytic generation of 
H2O2. Moreover, the impact of
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scavengers affecting the production of H2O2 is shown in Figure 6d and is discussed briefly in the 
Supporting Information. Thecomparison table to show the significance of the preparedbimetallic MOF 
for H2O2 production is given in Table S4.Alternatively, the photocatalytic H2 evolution efficiency ofthe 
synthesized materials was also measured with visible lightirradiation. In the absence of light or catalyst, 
the blankreadings were taken to prove that both the catalyst and lightirradiation are essential for the H2 
evolution reaction to takeplace. The pristine MOF ZUNH exhibits less H2 evolution rateof up to 115 
μmol h−1, which is due to the fasterrecombination of exciton pairs. However, the bimetallicMOFs show 
an enhanced H2 production rate because of thesuperior visible light absorption along with greater 
chargesegregation and transfer. The photocatalytic rate of H2evolution for the prepared bimetallic 
MOFs EZUNH-1, 2,and 3 was found to be 331.26, 302.01, and 270.81 μmol h−1,respectively, as 
depicted in Figure 7a. From the resulting plot,the EZUNH-2 exhibits the utmost photocatalytic 
H2production rate, which is almost 4-fold greater than thepristine ZUNH MOF. The apparent 
conversion efficiency(ACE) was analyzed to be 2.42%, as shown in Table S3. Thestability of the 
bimetallic MOF EZUNH-2 was checked byperforming four consecutive cycles of H2 evolution, 
whichsuggests that there was no substantial change in the rate of H2production, as shown in Figure 7b. 
Also, the postphotocatalyticXRD has been studied, as given in Figure S5. Table S4 suggeststhe 
comparative H2 evolution table to show the importance of the prepared EZUNH-2 bimetallic MOF.

5. MECHANISM INSIGHT
Herein, Scheme 2 demonstrates the plausible mechanism of the fabricated mixed metallic EZUNH-2 
MOF towardphotocatalytic H2O2 production and H2 evolution undervisible light irradiation, which 
was expressed thoroughlybased on the aforementioned analytical outcomes. Toinvestigate the 
fundamental mechanism, characterization analyses like UV−visible DRS, PL, XPS, MS, and EIS 
weretaken into consideration, from which the experimental resultsindicated a suitable reduction of band 
edge as well as superiorexciton pair segregation by the insertion of Eu ions into the ZUNH framework 
toward the H2O2 and H2 production.
Mainly, the reduction in band gap was observed for the EZUNH-2 MOF, which was effectively obtained 
from Uv−visible DRS and MS investigation outcomes, signifying a robustLMCT and excellent light-
harvesting propensity compared tothe pristine counterparts. From the Tauc plot, the obtainedband gap of 
bimetallic EZUNH-2 MOF was 2.59 eV, which islower than the pristine ZUNH.42 The Eu ion insertion 
into thepristine MOF lattice reduces the band gap and increases thevisible light captivation capacity. 
Also, the analysis outcomes ofPL and EIS offer a fascinating observation of improvedantirecombination 
of photoexcitons in the prepared bimetallicMOFs and promote a longer exciton lifespan than the 
pristineZUNH. The Eu3+/Eu2+ redox pair shows amended LMCT,which is well supported by the 
reduction of Zr4+ binding energy in XPS peaks, signifying superior transfer of electrons in the cluster, 
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accelerating the boosted photocatalytic activities.15,53 When the prepared materials were kept for 
visible light irradiation, the electrons from VB got excited to CB,leaving behind the holes and leading to 
the production ofhydroxyl radicals. These radicals act as strong oxidants forH2O2 production. This 
process leads to the undesirablerecombination of exciton pairs, which rapidly reduces thephotocatalytic 
activity. As reported by different groups, theEu3+ ions have unfulfilled 4f orbitals, which lead to 
thereduction of Eu3+. Herein, the Eu3+ may accept electrons in theCB to form Eu2+, and these Eu2+ 
ions transport the electrons todissolve O2 to produce superoxide radicals, inhibiting therecombination 
of photoexcited charge carriers. This shows thatEu3+ acts as an electron scavenger. However, it has 
beenobserved that the excessive presence of europium ions may act as recombination centers for 
photogenerated e− and h+ or elsemay block the active sites of the catalyst’s surface. 
Therefore,increasing the dopant concentration causes a sharp decrease inphotoactivity, as seen for 
EZUNH-3.31,48,54,55 The MS analysisoutcome determines the CB and VB positions of EZUNHMOF 
as 2.0 and −0.59 eV, respectively. Upon light irradiation,the bimetallic EZUNH-2 got excited to produce 
the photoexcitons, which occur by the electrons transferred from VB tothe CB, leaving behind holes in 
the VB, which directed to theprobable efficient reduction and recombination because of the existence of 
mixed valency metal ions in the framework structure. To investigate the photocatalytic mechanistic 
insights of H2O2 production, the CB potential of EZUNH-2 MOF was found to be −0.59 eV, which is 
more negative thanthat of the potential of H2O2 production at −0.33 eV, which isthe one-electron 
pathway, and at 0.68 eV, which represents thetwo-electron pathway.56 Thus, the longer lifetime of 
excitedelectrons endorses O2 reduction to produce H2O2, as shown ineqs 6 and 7.

Although, the VB of EZUNH-2 consisted of photogenerated  h+s, which further get trapped by ethanol 
(EtOH) as asacrificial agent. Also, the VB potential of EZUNH-2 satisfiesthe formation of hydroxyl 
radicals (OH•/OH− = 1.99 eV vsNHE). Henceforth, the combination of two OH• radicalsproduces 
H2O2, as depicted in eq 8.

The efficient H2O2 production shown by EZUNH-2 bimetallic MOF is 35.2 μmol h−1. Moreover, the 
reusabilitytest was performed for stability check of the as-synthesizedmaterial, which endows the 
stability of the sample up to foursuccessive cycles, as displayed in Figure 6b. Furthermore, toexplicate 
the mechanistic pathway, scavenger tests were carriedout. As depicted in Figure 6d, there are different 
scavengingagents like isopropanol (IPA), dimethyl sulfoxide (DMSO),parabenzoquinone (PBQ), and 
citric acid (CA) were used toexplore the role of OH•, e−, •O2−, and h+, respectively,throughout the 
photocatalytic H2O2 production reaction. Theobserved substantial decrease in the H2O2 
productionefficiency with PBQ and DMSO addition during the reactiontime can be witnessed in Figure 
6d, which demonstrates thate− − and •O2− act as the major active species for O2 reduction.In addition, 
IPA and CA play a very certain role towardphotocatalytic H2O2 production, which signifies that OH• 
andh+ are less reactive for the O2 reduction reaction. Therefore,the analysis results of scavenger tests 
follow the order e− > • O2− > OH• > h+ toward H2O2 production through O2reduction. 9,13 Also, 
supporting the scavenger tests, the TA(terephthalic acid) and NBT (n itroblue tetrazolium 
hydrochloride) test results confirm the formation of •O2− and OH• radicals by the bimetallic MOF 
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EZUNH-2, as shown in Figure S7.57,58
Moreover, the photocatalytic H2 evolution by mixed metal MOFs has been studied by following the 
mechanistic pathway.With the hole scavenger (10% methanol v/v solution), themanufactured mixed 
metal composite EZUNH-2 wasemployed for the photoreduction of water to create H2 gas.The H2O 
molecules can readily be adsorbed on the MOFsurface due to the hydrophilic character of the EZUNH-
2framework, which is enhanced by the presence of −NH2moieties. Following this, the protons formed 
by thedissociation of water molecules uptake the photoexcitedelectrons from the CB of EZUNH-2 and 
get reduced togenerate H2 gas. The reactions that followed for photocatalyticH2 production were 
designated as follows:

6. SUMMARY
Summarily, the synthesized single-component mixed metallic EZUNH MOF has been found to be a 
robust photocatalysttoward H2O2 and H2 production under light irradiation. Thesuperiority of the 
current work is followed by (i) The preparedsingle-component photocatalyst is a mixed valency 
(Eu3+/Eu2+) and bimetallic (Eu/Zr) MOF, i.e., (Eu3+/Eu2+) EZUNH,which is synthesized by a one-
step solvothermal method.(ii)The integration of mixed valency (Eu3+/Eu2+) into thebimetallic 
framework gives superior exciton pair antirecombination, high light absorption efficacy, and enhanced 
electrochemical properties, resulting in boosted photocatalytic activitycompared to the pristine ZUNH 
MOF. (iii)The joint effect ofboth the metal nodes and -NH2 functionalized linker inEZUNH MOFs 
results in a blueshift of the band gap andeffective band edge positions for superior light absorption witha 
slight reduction in surface area. (iv)The fabricated EZUNH-2bimetallic MOF exhibits the highest 
photocatalytic H2evolution rate of up to 331.26, along with an ACE value of2.42%, which is almost 3-
fold that of the pristine MOF. Also,the photocatalytic H2O2 production rate has been found to be35.2, 
which is up to 4-fold compared to that of the pristineframework. Herein, e−s are the main active species 
for H2O2production, as found from the scavenger test experiments.Finally, from the above results, it has 
been confirmed thatthe bimetallic EZUNH MOF is the first used photocatalysttoward H2 and H2O2 
production (μmol h−1) under visible lightirradiation.
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Fault Diagnosis in Chemical Reactors with Data-Driven 
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A B S T R A C T

This study investigates fault diagnosis, encompassing fault detection, isolation, and estimation, with 

experimental data in acontinuous stirred-tank reactor (CSTR) for the liquid-phase catalyticoxidation of 

3-picoline with hydrogen peroxide. Two key faults wereexamined: coolant inlet temperature spikes (fault 

1) and 3-picoline feedconcentration decreases (fault 2). Data-driven methods, including randomforest 

(RF) and k-nearest neighbors (KNN), successfully detected,isolated, and estimated faults under nominal 

conditions. However, bothdata-driven and model-based residual generators were disrupted by a shiftin 

the heat transfer coefficient (U). An isolation forest (IF) algorithm wasused for anomaly detection and 

model recalibration, restoring modelbased performance. Updated data sets enabled RF and KNN to 

adapteffectively, demonstrating their scalability and adaptability. Experimental results highlight the 

strengths of both methods, advocatingfor a combined framework for robust fault diagnosis.

1. INTRODUCTION

Fault diagnosis is a critical aspect of process safety in the chemical industry, where the reliability of 
operations candirectly influence productivity, economic performance, and,most importantly, safety.1,2 
Chemical processes are highlycomplex and involve multiple interrelated variables, oftenoperating 
under extreme conditions of temperature, pressure,and chemical reactivity. Any undetected faults within 
thesesystems can lead to equipment malfunction, production losses,environmental hazards, and, in 
severe cases, catastrophicaccidents involving the loss of life. Therefore, ensuring robustand timely fault 
diagnosis systems is paramount to mitigaterisks and enhance the overall reliability of 
industrialoperations.3
Fault diagnosis systems aim to detect, isolate, and estimate faults as early as possible to enable timely 
corrective actions,with each objective becoming progressively more challenging.In the chemical 
industry, faults can arise from various sourcesincluding sensor failures, actuator malfunctions, 
equipmentdegradation, and process disturbances. As processes becomemore automated and large-scale, 
human operators often facechallenges in manually identifying abnormal conditions due tothe 
overwhelming amount of data generated by processsensors. Hence, automated fault diagnosis methods 
havegained prominence as key components of process safetyframeworks. Early and accurate diagnosis 
not only preventsaccidents but also optimizes maintenance schedules, reducesdowntime, and enhances 
process efficiency. The necessity ofrobust fault diagnosis systems in the chemical industry has propelled 
the development of two primary approaches: modelbased and data-driven methods.4−6
Each approach offers distinct advantages and faces its own set of challenges. Model-based fault 
diagnosis involvesconstructing a mathematical representation of the system tocompare real-time data 
with model-predicted outputs.Deviations from the expected behavior, known as residuals,are indicative 
of faults.7 In contrast, data-driven approachesrely on historical operational data to train machine 
learningmodels to detect and classify faults.8,9 While model-basedmethods leverage knowledge of the 
system’s physics, datadriven techniques exploit patterns and trends hidden withinlarge data sets.Model-
based fault diagnosis techniques have long beenfavored in chemical process control due to their 
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strongfoundation in process physics. These methods are based onfirst principles�such as mass and 
energy balances�or empirical models that describe the behavior of the system.The core idea is to 
generate residuals, or error signals, bycomparing the system’s actual measurements with 
predictionsfrom the model. If a fault occurs, the residuals will deviatesignificantly from zero, indicating 
abnormal behavior. Popularmodel-based fault diagnosis techniques include observerbased,10−13 
parameter estimation,7,14 and parity spaceapproaches.15,16
Model-based approaches offer the advantage of physical insight, enabling fault detection, root cause 
analysis, and faultsize estimation without relying on extensive historical data.They are particularly 
reliable for rare or unmonitored faults butare heavily dependent on the accuracy of the system 
model.Developing such models for complex chemical processes ischallenging and time-consuming, 
requiring a deep knowledgeof process dynamics and operational variables. Additionally,real-world 
systems evolve over time due to factors such asequipment aging or operational changes, leading to 
modelmismatch and potential diagnostic errors. Adaptive modeling isoften needed to recalibrate the 
model, adding complexity andeffort, which limits the practical implementation of modelbased methods 
despite their reliability.
On the other hand, data-driven fault diagnosis methods have gained increasing popularity with the rise of 
machine learningand big data analytics. Data-driven approaches do not requireexplicit knowledge of the 
underlying system dynamics.8,17Instead, they rely on patterns, correlations, and anomaliespresent in 
the historical process data. Techniques such asrandom forest18,19 (RF), isolation forest20,21 (IF), 
supportvector machines22,23 (SVM), artificial neural networks24−26(ANN), and principal component 
analysis22,27,28 (PCA) arecommonly used in data-driven fault diagnosis applications.John MacGregor 
and Nomikos have made monumentalcontributions to process monitoring and fault detection 
inchemical processes, proposing a PCA-based approach usingonly data from successful batches to 
monitor a styrene−butadiene semibatch reactor.29 An advanced fault isolationmethod has been 
developed to handle both simple andcomplex faults by extracting fault signatures and comparingthem 
with a fault library of historical data.30 Additionally, afault-tolerant control strategy employing data-
driven latentvariable models constructed from historical process data ishighlighted, emphasizing their 
reduced dimensionality andinterpretability.31 Recent studies, particularly in Industrial &Engineering 
Chemistry Research (I&ECR), have focused onintegrating machine learning (ML) and artificial 
intelligence (AI) with process monitoring and fault diagnosis.32 By linking fault diagnosis models with 
real-time digital replicas of physicalsystems, these approaches enable proactive maintenance,predictive 
analytics, and performance optimization.33−36The strength of data-driven methods lies in their ability 
tohandle complex, nonlinear systems without the need fordetailed models of the process. They are 
particularly wellsuited for systems in which developing an accurate model isimpractical or infeasible. 
Moreover, once trained, data-drivenmodels can be deployed to monitor systems in real-time anddetect a 
wide range of faults with minimal human intervention.These methods are also highly scalable, making 
themapplicable to large and complex processes with multiplesensors and data points. However, the 
major challengeassociated with data-driven approaches is the requirement forlarge and diverse data sets. 
In many cases, particularly for faultsize estimation, data-driven models often require training ondata sets 
that encompass a diverse range of fault scenarios ensure satisfactory performance.37,38 In the chemical 
industry,where processes often run under nominal operating conditionsfor extended periods, it is 
difficult to obtain sufficient datarepresenting the various faulty states.
Recently, combined fault diagnosis methods, which incorporate the strengths of model-based and data-
driven techniques, have emerged as a promising solution to overcome the limitations of both 
approaches.39−41 These methods aim to integrate the physical insights offered by model-
basedapproaches with the pattern-recognition capabilities of datadriven methods. For instance, model 
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residuals can be used asinputs to a machine learning model, enabling more accurate fault classification. 
Alternatively, data-driven methods can beused to update model parameters in real-time, improving 
themodel’s adaptability to changing system conditions.
Despite the potential advantages of combined approaches, their practical implementation remains 
limited, especially whenapplied to experimental data for achieving all three aspects offault diagnosis: 
detection, isolation, and estimation. Moststudies in the literature focus on simulation-based 
validation,where fault scenarios can be artificially generated and tested.For example, the Tennessee 
Eastman (TE) process is acommon testbed for data-driven and model-based methods.42−44 As for 
experimental study, a hybrid approach combining an extended Kalman filter (EKF) with aprobabilistic 
neural network classifier has been successfullyapplied for fault detection and diagnosis in fed-batch and 
batchreactors, providing accurate monitoring through the estimationof reactor parameters and 
classification of fault types.45 Arobust fault detection methodology for hybrid process 
systems,incorporating tools from unknown input observer theory andLyapunov stability, has been 
developed to reliably distinguishbetween faults, mode transitions, and uncertainties.46 A 
hybriddata/model-based approach combining SVM with an observeris proposed for fault detection and 
isolation in nonlinearchemical reactions, effectively reducing the reliance on preciseprocess models or 
extensive training data.23 A hybrid modelcombining first-principles and neural networks was 
developedfor automatic fault detection and identification, leveraging bothsimulation data and historical 
process information. Tested onreal data from a methanol−water distillation column, thismethod 
outperformed traditional first-principles models byeffectively identifying faults and demonstrating its 
potential forapplication in refining and petrochemical processes.47
Recently, we introduced a comprehensive fault diagnosis methodology for a CSTR chemical reaction 
system, leveragingmodel-based residual generators as estimators, systematic dataprocessing to mitigate 
noise, and predefined thresholds forfault alarms. These residual generators, designed as 
functionalobservers decoupled from disturbances, estimate fault sizes.Fault isolation is achieved 
through multiple independent residual generators.48,49 The experiment successfully demonstrated the 
effectiveness of fault diagnosis in a CSTR acrossvarious fault scenarios.50 During these experiments, 
anintriguing phenomenon caught our attention: after switchingequipment, the previous model’s 
performance declined.Further experimentation suggested that this might be due toa change in the heat 
transfer coefficient. This raised importantquestions about how to detect model mismatches or 
parameterchanges and how we could leverage known experimental datato enhance the fault diagnosis. 
Addressing these issues wasessential to our work.
In this study, we examine data-driven approaches for fault diagnosis in chemical reactors, comparing 
them with modelbased observers. While model-based residual generators excelin robustness and 
accuracy, especially when the system’sdynamics are well understood, data-driven methods like RFand 
KNN offer promising, scalable solutions. Whereas both methods performed well under nominal 
conditions, systemparameter changes, like shifts in the heat transfer coefficient (U), posed challenges 
for both approaches. To address this, we implemented an isolation forest (IF) algorithm for 
anomalydetection and model recalibration. The study shows thatcombining data-driven and model-
based methods can enhancefault diagnosis, with data-driven techniques becoming morerobust after 
training in updated system conditions.

2. BACKGROUND AND METHOD
This section introduces the reaction system and summarizes key results achieved using model-based 
fault diagnosistechniques. However, some challenges remain that cannot beeffectively addressed by 
model-based methods alone. Thislimitation motivates the exploration of a hybrid approach 
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thatleverages the strengths of both model- and data-driventechniques. Additionally, the fundamentals of 
the data-drivenmethods applied in this work are briefly outlined.

2.1. Reactor (CSTR) Model and Experiment Setup. 
The N-oxidation of alkylpyridine is a crucial reaction in drug synthesis and pharmaceutical applications. 
Studies have shownthat a continuous stirred tank reactor (CSTR) is an effectivesystem for the N-
oxidation of 3-picoline using hydrogenperoxide,51 a process aligned with green chemistry 
principles.The reaction mechanism is illustrated in Figure 1.

The CSTR setup and experimental process are schematically represented in Figure 2, with a 50 mL 
jacketed glass The objective is to detect, isolate, and estimate two faults inthis process (for detailed 
information, refer to the cited work).During the experiments, faults were introduced, and sensorreadings 
(TT1 for reactor temperature, TT2 for jackettemperature, and AT for 3-picoline concentration) were 
usedto successfully diagnose faults. This was achieved using model based residual generators derived 
from the functional observer applied to the system equations (eqs 1−5). Fault detection,isolation, and 
estimation were successfully achieved in our experiments using model-based residual generators.50
The reaction model is built with mass and energy balances, where CA is the concentration of reactant 3-
picoline, CB is theconcentration of reactant hydrogen peroxide, w(t) is theunknown kinetics variation, 
R(CA,CB,T) is the reaction rate, Tis the reactor temperature, δt = 0.1 s as the discretization time
interval, and Tj is the jacket temperature. The system dynamicsand the specifics of the residual 
generators are detailed asfollows:50



ISSN 1520-5045ISSN 1520-5045

Industrial & Engineering Chemistry Research (Volume- 64, Issue - 3, Sept - Dec 2025)                                                                   Page No. 24

Residual generators were constructed for this system to implement fault diagnosis, which remain below 
a threshold ifthere is no fault happening and respond to faults (f1,f 2), and toprovide an estimate of these 
fault sizes.For fault 1, a spike in coolant feed temperature Tj,in, thefollowing functional observer was 
built,
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In eqs 6−9, y 1, y2, andy3represent the output measurementsin deviation form, α1 and α2 are tunable 
parameters thatrepresent the observer eigenvalues, r1 and r2 are the residualsthat also represent 
estimates of f1 and f 2, respectively, underthe assumption that they are of step or ramp type. The detailsof 
individual parameter values are given in Table S1.50
It is important to emphasize that the residual generators are unaffected by fluctuations in the reaction 
kinetic rate, whichcould otherwise introduce significant errors. Moreover, the tworesidual generators 
are decoupled, allowing for effective faultisolation. The experimental results demonstrated 
successfulfault diagnosis for both faults, providing highly accurateestimates of their magnitudes.50
2.2. Random Forest (RF), K-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN) for 
Fault Diagnosis. The random forest regressor is an ensemblelearning technique tailored for regression 
tasks.18 It constructsmultiple decision trees during training and averages their predictions to enhance 
accuracy and mitigate overfitting.Unlike individual decision trees, which are prone to highvariance and 
overfitting, random forest uses bagging (bootstrapaggregation) and random feature selection to build a 
more robust and generalized model. This approach reduces the likelihood of overfitting and improves 
the model’s performanceon unseen data.
The random forest algorithm applies bootstrap sampling to generate multiple training subsets. Given a 
data set= { } D = (x , y) I I i
n 1, where xi is the input feature and yi is the target variable, the algorithm generates t bootstrap samples. 
Abootstrap sample Db is used to train the decision tree. Theremaining data, called the out-of-bag (OOB) 
sample, can beused to estimate the model’s performance.Each decision tree in the forest is constructed at 
each node;a subset of features Fm ⊆ F is selected at random. The splittingcriterion used in regression is 
typically based on minimizingthe mean squared error (MSE). Once the tree is fully grown(or meets a 
stopping criterion, like maximum depth), it canmake predictions for new data. The prediction for a new 
pointx is the average of the target values y for all samples that fall into the same leaf node as y:

Where y (x) i is the prediction of the i-th tree.
The k-nearest neighbors (KNN) regressor is a nonparametric, instance-based learning algorithm used 
for regression tasks.52 Unlike statistical model-based methods,such as random forest, KNN does not 
require explicit trainingor model fitting. Instead, it predicts the target value byaveraging the target values 
of the k-nearest neighbors in thefeature space, relying solely on the stored training data.KNN uses a 
distance metric, typically the Euclideandistance, to identify the closest training points to a newquery 
point. In KNN regression, the predicted value for a givenquery point is the average of the target values of 
its k-nearestneighbors. The hyperparameter k determines how manyneighbors are considered in the 
prediction. Because KNNdoes not build a model, the computational cost of training isminimal, but 
predictions can be slower, especially with large data sets.
The algorithm for KNN can be explained as follows: for a given test point x, KNN calculates its distance 
to all trainingpoints using a predefined distance metric. The most commondistance metric used is the 
Euclidean distance. Once thedistances between the test point x and all training points arecomputed, the 
algorithm identifies the k-nearest neighbors by selecting the k points with the smallest distances. Let 
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Nk(x) bethe set of k-nearest neighbors of x. Then, in KNN regression,the predicted value y(x)for a new 
point x is computed as theaverage of the target values of its k-nearest neighbors:

Artificial neural networks (ANNs) are a class of machine learning algorithms inspired by the structure 
and functioningof biological neural systems.53 ANNs learn complex patterns from data through 
interconnected layers of nodes or “neurons.″ These algorithms are widely used in tasks such 
asclassification, regression, and generative modeling, when dealing with high-dimensional or 
unstructured data. 
ANNs consist of an input layer, one or more hidden layers, andan output layer. The hidden layers contain 
neurons that applylinear transformations followed by activation functions to theinput data, allowing the 
network to model nonlinearrelationships. The training process involves iteratively updatingthe network 
parameters (weights and biases) using optimization algorithms, e.g., stochastic gradient descent (SGD), 
tominimize a loss function, such as mean squared error (MSE) orcross-entropy loss. Nowadays, neural 
networks are thebackbone of deep learning and a cornerstone of many stateof-the-art AI systems.54
The algorithm for training a neural network can be summarized as follows: given a data set of 
input−outputpairs (X,Y), the network predicts outputsyby applyingforward propagation through its 
layers. The error between thepredicted and actual outputs is quantified using a loss function,and the 
gradients of this loss with respect to the networkparameters are computed using backpropagation. 
Finally, the are updated in the direction of the negativegradient by using an optimization algorithm. This 
process isrepeated iteratively, until the model converges to an optimalset of parameters. The 
mathematical formulation for a singleneuron in a neural network is where x is the input, W is theweight 
vector, b is the bias, z is the linear combination, andf(z) is the activation function. The activation 
functionintroduces nonlinearity, enabling the network to modelcomplex patterns.

2.3. Isolation Forest for Anomalies Detection.
Anomaly detection is a critical task across various domains,such as industrial monitoring, fraud 
detection, cybersecurity,and medical diagnostics. The objective is to identify datapoints that deviate 
significantly from expected patterns, whichmay indicate rare but important events such as 
systemmalfunctions, fraudulent activities, or network intrusions.This task is challenging due to the 
complexity and variabilityof real-world data, where normal behavior can fluctuatesignificantly and 
anomalies may be subtle or occur in highdimensional spaces.Isolation forest (IF), introduced by Liu et 
al.,55 offers a novelapproach to anomaly detection by focusing on the concept ofisolation rather than 
traditional distance or density-basedmeasures. The core principle of IF is that anomalies are “fewand 
different”, making them easier to isolate from the rest ofthe data. Instead of evaluating a point’s relative 
position withinthe data set, IF isolates each data point by recursivelypartitioning the data set through 
random splits. IF is anefficient algorithm for anomaly detection, focusing on isolatingdata points by 
recursively splitting the data set. Anomaliesstand out because they differ significantly from normal 
datapoints, and as a result, they are isolated more quickly duringthe partitioning process.The IF method 
offers several key advantages: (I) scalability:the algorithm scales linearly with the data set size, making 
itideal for large-scale applications; (ii) no assumptions aboutdata distribution: unlike methods that rely 
on specific datadistribution assumptions (e.g., Gaussian), IF is distribution agnostic, enhancing its 
robustness across various domains; (iii) handling high-dimensional data: IF performs effectively 
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onhigh-dimensional data sets, avoiding the “curse of dimensionality” that hampers many traditional 
approaches. 
The path length h(x) represents the number of edges traversed in an isolation tree before a point x is 
isolated.Anomalous points, which are more distinct, tend to haveshorter path lengths. The anomaly 
score is based on this pathlength but normalized to fall within the range [−1, 1] where−1 indicates 
anomalies and 1 represents normal data points.Given a point x, its anomaly score s(x) is calculated as

Where E[h(x)] is the average path length of point x across the isolation trees and c(n) is the normalization 
factor,representing the average path length for a normal point in adata set of size n. The IF algorithm 
operates as follows: data setX of size n and a number of trees t are subsampled with size ψ,forming a 
subsample Xψ. Then the subsample is recursivelypartitioned with a selected feature f and a split value p 
withinthe range of the feature, until each data point is isolated or thetree reaches a maximum depth L. For 
each point x, traverse theisolation tree to compute its path length h(x). Finally, calculatethe anomaly 
score s(x), if it is positive, it indicates a normalpoint; on the contrary, if negative, it represents an 
anomaly.

3. RESULTS AND DISCUSSION
The sensor data sets were collected from open-loop experiments, as previously described and consistent 
with our earlier study.50 To reduce noise and ensure comparability, the datasets were normalized, and a 
1200-point moving average filterwas applied to the data-driven fault prediction outputs, andresidual 
signals were filtered using fast Fourier transform(FFT). Data-driven training and analysis were 
conducted on aLenovo ThinkPad P53 (Intel 9850H CPU, Nvidia QuadroRTX 5000 mobile GPU, 128 
GB RAM) using Python (Scikitlearn, TensorFlow, and PyTorch) and MATLAB on SlackwareLinux. 
Detailed parameters for RF, KNN, and IF are providedin Table S2 and ANN and RNN are provided in 
Table S3.
3.1. Data-Driven Fault Diagnosis. The residual generators have demonstrated their ability to detect, 
isolate, andestimate faults in the CSTR process. Following theexperimental runs, the collected data 
prompted the questionof whether data-driven methods could also be applied for faultdiagnosis. A total of 
19 data sets with sensor readings andknown fault sizes were used, with one serving as the test setand the 
remaining 18 as the training set. We applied methods: random forest (RF) and k-nearest neighbors 
(KNN). RF is a model-based statistical approach, while KNN isnonparametric, providing a 
representative comparison fortesting data-driven methods.
Since we already know the exact time and magnitude of the faults from the experimental data, training 
the data-drivenmodels does not require knowledge of the system equations-(eqs 1−5) or the model-
based residual generators (eqs 6−9).Instead, the sensor readings are used to train the models solelyon the 
basis of the fault occurrence times and fault sizes,making this a “model-less” approach to fault diagnosis. 
Thedetection thresholds were determined using a Bayesianchangepoint detection mechanism56 with 
one data set andtested across all data sets, ensuring effective and accurate fault



detection. Additionally, the data-driven regressors accurately converged to the actual fault size, 
demonstrating a strong performance in fault estimation.

With only one fault introduced into the system�fault 1, caused by a spike in coolant inlet 
temperature�the expectedoutcome is accurate detection and estimation of the fault size,while 
predictions for fault 2 remain low, as no fault associatedwith 3-picoline concentration is present.
As shown in Figure 3a, fault 1 is introduced at the 2 h mark, at which point the RF regressor (red line, eq 
11) promptlydetects the fault (represented by the green line) and respondswithin 5 min, converging to 
the correct fault size of 10 within30 min. A threshold of 3 could be applied for fault detection,when the 
signals of the residual generator or RF regressorexceed this threshold, a fault is then alarmed. We 
alsoevaluated the performance of the moving average filter, with a1200-point window proving to be an 
effective choice, with R2 =0.96, and the results are provided in Table S3. Theperformance of RF is 
comparable to that of a model-basedresidual generator (blue line, “MB” for model-based) with aslight 
delay, demonstrating the efficiency of RF in faultdetection and size estimation. In Figure 3b, the signal 
for fault2 remains low throughout the test, confirming that no fault related to the decrease in 3-picoline 
concentration is present, of which the residual generator (blue line) provides a similarresult. Similarly, a 
threshold could be set at 0.3, and bothsignals remain below this threshold, indicating that there is nofault 
happening. This accurate isolation further validates therobustness of the RF model for single-fault 
scenarios. Theseresults highlight the ability of data-driven methods to bothdetect and isolate faults with 
precision comparable to modelbased residual generators, even in complex system dynamics.The same 
procedure was applied using the k-nearest−neighborhood (KNN) regressor, and the results are shown 
inFigure 4. In Figure 4a, the KNN model (red line, eq 12) swiftlyresponds to the introduced fault 1, 
similar to the RF results,detecting the fault promptly and converging toward the correct fault size. In 
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Figure 4b, the signal for fault 2 remains consistently low throughout, indicating successful fault isolation 
and confirming that no fault is associated with the decrease in the 3-picoline concentration. These 
resultsdemonstrate that the KNN regressor, like the RF model,achieves both fault isolation and size 
estimation effectively,reinforcing the viability of data-driven approaches in faultdiagnosis tasks. In both 
methods, there is a slight delay of datadriven methods compared with model-based residual generators, 
showing a possible quicker response in residual signals.b. Only one fault is happening,

In the reversed scenario, where the only fault occurring in the system is fault 2�a decrease in the 3-
picoline feed inletconcentration�the expectation is that the model will detectand estimate the size of 
fault 2, while the prediction for fault 1remains low, as no coolant inlet temperature spike is present.
In Figure 5a, the fault 1 prediction remains consistently lower than 3, indicating no fault related to the 
coolant inlettemperature, as expected. In Figure 5b, the model responds tofault 2 swiftly and converges 
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to the correct fault size within 30min, showing promising results in fault detection and estimation. 
Similarly, when the KNN regressor is tested in

this scenario: in Figure 6a, the predicted value for fault 1 stays low, though slightly higher than that of the 
RF model, stillconfirming no fault. In Figure 6b, the KNN model promptlydetects fault 2, accurately 
estimating its size with a short response time.
Despite minor discrepancies observed in both fault scenarios, the models consistently detect faults when 
theyoccur, although the precision of the magnitude estimationvaries. Crucially, the timing of fault 
detection is accurate inboth cases, with the models successfully identifying both theonset and the 
resolution of faults. This is especially clear in thecase of fault 2, where the predicted and actual fault sizes 
nearlyconverge during the period of sustained fault, demonstratingthe models’ effectiveness in 
accurately tracking fault behaviorover time. For both RF and KNN, a slight delay is also 
presentcompared with residual signals.
c. Two faults are happening,

Figures 7 and 8 present the comparison between the actual and predicted fault sizes for fault 1 and fault 2, 
using twodifferent machine learning models: RF and KNN, respectively.Each figure consists of two 
subplots: Figures 7a and 8arepresent fault 1, and Figures 7b and 8b represent fault 2. Inboth cases, the 
predictions are compared against the ground offault sizes, along with model-based residual signals.
The random forest model shows a very close alignment between the predicted fault size (red line) and the 
actual faultsize (green line). The model captures the onset of the faultaround 2 h, and the prediction 
remains accurate throughoutthe fault duration. As for the residual signal, there is a smalldeviation, less 
than 1.0 K, especially during the sustained faultevent (fault size ∼10), which is acceptable. The sharp 
rise andstable fault size during this period suggest that random foresthandles significant faults 
efficiently and with high precision.Prior to the major fault event, the RF model exhibits somesmall 
fluctuations in the predicted fault size that occur in the time range between 0 and 1.5 h. These small 



ISSN 1520-5045

Industrial & Engineering Chemistry Research (Volume- 64, Issue - 3, Sept - Dec 2025)                                                                   Page No. 31

deviations do not affect the overall value as they are below the detection threshold.
The KNN also shows strong predictive performance with the predicted fault size (red line) following the 
actual fault size(green line) very closely during the main fault period. The riseof the fault at 
approximately 2 h and the sustained fault arecaptured well.
For fault 2, both models exhibit similar performance, but the random forest model shows more 
variability and fluctuation inits predictions. This might indicate that random forest is moreprone to 
overfitting to noise in cases where the fault dynamicsare more complex, but all fluctuations are well 
below detectionthresholds. As for the model-based residual signal (MB, theblue line), the noise level is 
much higher than data-driven

methods; however, it has a better prompt response to the fault happening.
Neural networks have gained popularity in recent years to their ability to model complex, nonlinear 
systems effectively.Building on the fault diagnosis conducted using KNN and RF,we also applied 
artificial neural networks (ANN) and recurrentneural networks (RNN) to explore their effectiveness. 
Thesemethods were chosen to leverage their capacity for capturingintricate patterns and, in the case of 
RNN, for addressingtemporal dependencies within the data.The fault diagnosis achieved using an ANN 
and an RNN isillustrated in Figures 9 and 10. In Figures 9a and 10a, the ANNand RNN successfully 
identify fault 1 by comparing the actualfault (green line) with the predicted fault (red line). Thethreshold 
of 3.0 (dotted line) is used to detect faultoccurrences. Similarly, in Figures 9b and 10b, fault 2 
isdiagnosed with a threshold of 0.3, where the ANN and RNNboth capture the fault dynamics through 
the alignment of theactual fault (green line) and predicted fault (red demonstrates the effectiveness of 
neural networks in detecting and predicting fault conditions. Figure 10 plotted using RNNappears to 
exhibit higher noise levels in the predicted compared with Figure 9. This increased noise could be 
attributed to RNN’s sensitivity to temporal dependencies, which may amplify variations in the data.
While the neural network demonstrates strong performance in fault diagnosis, the computational time 
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required is much higher compared to RF and KNN. The average timeconsumption for a single cycle of 
training and testing usingKNN, RF, ANN, and RNN is detailed in Table S5.Additionally, Table S6 
compares the performance of thesemethods in estimating fault sizes against the actual fault values.We 
will present results only for KNN and RNN, as theydemonstrate satisfactory performance.d. Two faults 
happening at different times

It is crucial to verify fault isolation with experimental data that fault 1 and fault 2 are happening at two 
different times.The RF model accurately predicts the onset and magnitudeof fault 1 in Figure 11a. The 
predicted fault size (red line)closely follows the actual fault size (green line), particularlyduring the 
critical period after 3 h, where the fault size risessharply and stabilizes around a fault size of 10. The 
modelconsistently captures the duration and magnitude, demonstrating a high prediction precision 
during the main fault event.

The KNN model similarly demonstrates strong predictive performance for fault 1 in Figure 12a, with the 
predicted faultsize (red line) following the actual fault size (green line)closely. The model effectively 
captures the sharp rise in the fault size around 3 h, maintaining accuracy throughout thesustained fault 
period. As for the model-based residual signal (MB, the blue line), we observe an overshoot, giving a 1.2 



Koverestimation of fault size, which is within the experimental tolerance.
For fault 2, in Figure 11b, the predicted random forest model fault size (red line) captures the general 
trend of thefault, which begins around 2 h and persists until the end of thetest. After the fault reaches its 
maximum (fault size 0.6), therandom forest model stabilizes and follows the actual fault size(green line) 
more closely. In Figure 12b, the KNN modeloffers slightly smoother predictions for fault 2. While 
thepredicted fault size (red line) does fluctuate in the early faultperiod (around 3 h), the overall 
estimation is sound.

These results exhibit successful fault isolation; the noise level is not too high to invalidate fault 
detection, and especially theestimation for both fault sizes is remarkably good. The slowerresponse 
compared with residual generators is not unforeseeable, as model-based methods have the edge in the 
system dynamics.
e. Two smaller faults are happening

Figures 13 and 14 demonstrate the performance of fault prediction models RF and KNN for a smaller 
fault scenario,respectively. Each figure consists of two subplots: a representsfault 1 and b represents 
fault 2, where the faults are smaller inmagnitude compared to previous scenarios.
In this smaller fault scenario, the random forest model shows relatively good performance in Figure 13a. 
The predicted faultsize (red line) aligns with the actual fault size (green line),particularly after the fault 
onset around 2 h. However,compared to the larger fault scenario, the random forestmodel introduces 
more variability in its predictions. The predicted fault size fluctuates around the actual fault 
size,especially after 2.5 h, where the model tends to overestimatethe fault magnitude. The KNN model 
provides more stablepredictions for fault 1 under the smaller fault scenario in Figure14a after 3 h. The 
predicted fault size (red line) follows theactual fault size (green line) closely, with fewer 
deviationscompared with the random forest model. There is a minoroverestimation of the fault size 
around 2.5 h, but overall, themodel tracks the actual fault size more  consistently. Theresidual signal 
shows superb performance with both accuracyand responsiveness.
For fault 2, the random forest model (Figure 13b) and the KNN model (Figure 14b) exhibit a slight 
overestimate at thebeginning of the fault occurrence , and the KNN model showsa larger overshoot at 
around 2.5 h. Overall, the KNN model’sability to provide smoother predictions with fewer 
oscillationsmakes it better suited for capturing the smaller faults in fault 2,as it appears less sensitive to 
noise or minor deviations in thedata especially after 3 h.
Estimating smaller faults is generally more challenging due to the lower signal-to-noise ratio, a 
difficulty also withmodel-based observers, as discussed in our previous study.50The results demonstrate 
that data-driven methods (RF andKNN) are capable of diagnosing these minor faults effectively.
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In conclusion, both models are effective at detecting smaller faults. Model performance: both random 
forest (RF) and knearest neighbors (KNN) demonstrated strong performance indetecting and isolating 
faults as well as estimating their sizes.The circular iteration ensured robustness and consistencyacross 
the data set. However, in all the cases, model-basedresidual signals show better responsiveness and 
faster faultdetection. Accuracy: the average accuracy across all tests washigh, with minimal variance 
between data sets. This indicatesthe effectiveness of both RF and KNN across differentoperational 
conditions. Fault Isolation: both methods successfully isolated the faults in the system, identifying the 
affectedcomponents without false positives or significant misclassifications. Fault size estimation: the 
size estimation of faults waswithin acceptable error margins, showing that data-drivenmethods, when 
properly trained, can provide reliable faultmagnitude estimates without relying on model-based 
equations.
3.2. Isolation Forest for Anomalies Detection. A major limitation of the model-based approach is that 
not all processescan be easily modeled, and even with a validated model,operational parameter changes 
may still occur. Similarly, datadriven methods cannot reliably diagnose faults without priorknowledge 
of faulty data sets or at least similar conditions fortraining. For example, during experimentation, it was 
observedthat after reassembling the equipment the previously effectivemodel-based residual generators 
showed reduced performance,while data-driven methods produced false detections. Thissetup 
considered a scenario in which only a single fault waspresent in the process, as described below.

The model-based residual signals are shown as blue lines. For fault 1 in Figure 15a, the model-based 
residual signalspikes above 20 before stabilizing around 17, which is over60% higher than the actual 
fault size, indicating a clearoverestimation. In Figure 15b, despite no fault being presentfor fault 2, the 
residual signal incorrectly estimates around 0.5,as a false positive. For the data-driven methods, RF (red 
lines)and KNN (cyan lines), the performance for fault 1 in Figure15a is notably strong, accurately 
detecting and estimating thefault size at 10. However, both methods also produced falsepositives for 
fault 2 in Figure 15b. All methods failed under the system parameter change, which is expected. Data-
driven methods struggled due to the lack of similar scenarios in thetraining sets, and the model-based 
observer failed because theparameter change caused a mismatch in the system model,invalidating the 
residual signals.
This was traced back to a change in the heat transfer coefficient with additional experiments. It is crucial 
to detectchanges in the heat transfer coefficient (U) before any faultsare introduced into the system. 
Early detection allows fortimely adjustments to the model parameters, preventingpotential losses due to 
detection delays when actual faultsoccur. Therefore, the goal is to detect shifts in U during thenonfault 
steady-state operation, enabling proactive model adjustments before faults impact system performance.
In data-driven methods, detecting changes in the heat transfer coefficient (U) is equivalent to identifying 
anomalousdata sets compared to a set of nominal runs. Therefore, it isnatural to apply an anomaly 
detection algorithm, with Isolationforest (IF) being an ideal choice due to its simplicity and 
lowcomputational resource requirements. The isolation forest (IF)parameter settings include 200 
estimators, a contaminationlevel of 0.2, and a maximum sample size of 256. Further detailson all 
parameter settings are provided in Table S2. The sensordata sets, collected before any faults were 
introduced into thesystem and with a known U = 18 W/(m2·K) (calculated usinga heat transfer area of 
0.08 m2), are used to train the IF model.After training, several data sets with potentially altered Uvalues 
are tested against the model, and anomaly scores arecalculated according to eq 14.The results are 
summarized in Figure 16, where four datasets were randomly selected for testing: two with old U = 18

ISSN 1520-5045

Industrial & Engineering Chemistry Research (Volume- 64, Issue - 3, Sept - Dec 2025)                                                                   Page No. 34



W/(m2·K) and two with new U. In the figure, the two data setswith U = 18 show consistently positive 
anomaly scores,indicating that the sensor readings align with the training set.In contrast, the two data 
sets with altered U values show agradual detection of anomalies by the IF model, with anomalyscores 
dropping sharply into the negative range and stabilizingaround −0.1, as marked by the pink area in 
Figure 16. Thissuccessful anomaly detection confirms a change in U within these two data sets.
Once an anomaly is detected, the next step is to adjust the model parameter (U) to ensure that the residual 
generatorscontinue to function optimally for fault diagnosis. There arenumerous regressors available in 
the data-driven toolbox forestimation tasks. However, a key drawback of data-driven methods is that 
models must be trained with data sets corresponding to various known U values. In practice, the Uvalues 
may not always be known a priori, which can result inunreliable output estimates. To address this, we 
refer back tothe system model described in eqs 1−5.
Assuming the system is in a steady state and no faults are present, we can derive an equation from eqs 1 
and 3, resultingin eq 15. Additionally, by considering eq 4 alone, we canestablish eq 16. Both of these 
equations provide estimates ofthe U value, offering a more reliable approach than purely datadriven 
methods.

Direct calculation using eq 16, as shown in Figure 17a,  incorporates a moving average filter with a 
window size of6000 points. However, the results are suboptimal due to thehigh noise levels. Not all data 
sets can be reliably calculatedusing eqs 15 and 16 because the divisor involves 
temperaturemeasurements, which are subject to sensor noise. As noted ineq 5, floating-point division 
can lead to significant errors whenthe divisor is small.
The mean values of the calculated lines in Figure 17a are 17.6 and 19.07, which are close to the actual 
value of 18 W/(m2·K). However, the high noise level makes direct calculationimpractical for all data 
sets. This issue arises because thereactor jacket’s thickness is only around 0.2 mm, resulting in alarge 
heat transfer coefficient. Consequently, the temperaturedifference between T − Tj is small and is 
exacerbated evenmore, as the measurement noises (eq 5) of temperature have avariance over 0.6, which 
can lead to significant errors in thecalculation due to the small magnitude of the temperature difference.
A more effective approach is to frame the problem as an optimization task. By rearranging eqs 15 and 16, 
we derive theresiduals as follows:
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under the condition with the lower bound [U1 U2] = [0 0]. The optimization problem is solved using the 
global trustregion reflective algorithm, and the results are plotted in Figure17b. The calculated curves 
exhibit much smoother behavior.The nominal runs, old U data 1 (black line) and old U data 2(red line), 
fluctuate between 15 and 20, indicating stable butslightly lower U estimates over the actual value of 18. 
Theoverall trend for these nominal conditions remains relatively constant.
In contrast, the changed conditions, new U data 1 (green line) and new U data 2 (blue line), show 
fluctuations around

40 W/(m2·K), representing significantly higher U valuescompared to the nominal runs. This stark 
difference in Uvalues between the old U and new U conditions reflects achange in the heat transfer 
coefficient. The mean values ofFigure 17b, calculated U, are summarized in Table 1.

Using this method, following data triage, the experimental data revealed two distinct categories of U 
values: one centeredaround 18 W/(m2·K) (average 17.8, standard deviation 1.12)and another centered 
around 40 W/(m2·K) (average 38.9,
standard deviation 3.1), demonstrating good stability. After isolation forest (IF) anomaly detection, if a 
data set is flaggedas negative, the U value is recalculated to update the modelbased residual generators 
for fault diagnosis.The results are depicted in Figure 18, showing the faultdiagnosis for both fault 1 and 
fault 2 using parameter-updatedmodel-based residual generators. In Figure 18a on the left, theblue line 
represents the updated residual signal, which slightlyoverestimates the fault size after the 2 h mark, 
stabilizingaround 11.5, within acceptable experimental tolerance. The redline shows the previous 
residual signal, as seen in Figure 15a,which deviates significantly from actual fault 1 (green line). 
InFigure 18b on the right, the results for fault 2 detection are  shown, with no actual fault present (as 
indicated by the green line staying flat at zero). The updated residual signal (blueline), although showing 
some fluctuations, does not exceed thefault detection threshold. This updated signal performs 
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muchbetter than the previous residual signal in Figure 15b, indicatedby the red line.The procedure is 
outlined in the flowchart presented in Figure 19. Initially, sensor readings are analyzed using theisolation 
forest (IF) algorithm for anomaly detection. If no anomalies are found, the system proceeds with the 
modelbased residual generators using the default U value. However,if the anomaly scores drop below 
zero, indicating a potentialissue, then an optimization algorithm is triggered to recalibratethe U value. 
This updated U value is then used to adjust theresidual generators, allowing the model-based fault 
diagnosis tocontinue accurately under the new conditions.To apply a data-driven method, a backup 
model-based residual generator must be used for fault diagnosis in the newparameter-changed scenario 
until sufficient data sets with thenew parameter and fault conditions are collected. Once thesedata sets 
are validated against actual faults, they areincorporated into the data-driven RF and KNN training 
sets,labeled with the corresponding U value. This process updatesthe training sets, enabling data-driven 
methods to adapt to thenew conditions.To evaluate the efficacy of this approach, seven data setswith U = 
40 W/(m2·K) were used. Figure 20 presents the faultdiagnosis results with RF and KNN. The same data 
set fromFigure 13 is used as the testing set, and six new data sets



marked with U = 40 were incorporated into the data-driven training set. This process allowed for data-
driven approaches totrain and gain new knowledge about the system, thusenhancing fault diagnosis.
The result is shown in Figure 20, presenting the fault diagnosis results for both fault 1 and fault 2 using 
trainingupdated RF and KNN. In Figure 20a on the left, the red lineshows the RF model’s prediction, 
which closely follows theactual fault size but fluctuates slightly after the initial detection,oscillating just 
below the true fault magnitude. The blue line,representing the KNN prediction, also aligns well with 
theactual fault, responding quickly and providing accurateestimates with fewer fluctuations compared 
with the RFprediction. In Figure 20b on the right, the results for fault 2detection are displayed, where no 
actual fault is present (asindicated by the green line remaining flat at zero). Both the RF(red line) and 
KNN (blue line) predictions show minorfluctuations hovering slightly above zero. Nevertheless, these 
signals remain below the threshold of 0.3, indicating that there is no fault.As more training scenarios are 
gathered, it has beendemonstrated that data-driven methods can also effectivelyperform fault diagnosis, 
matching the reliability of model-basedapproaches. Overall, the data-driven approaches (RF andKNN) 
demonstrate strong performance for fault 1, accuratelydetecting and estimating the fault size. In the case 
of fault 2,despite some fluctuations, there are no false positives andreliable fault isolation.This 
procedure is illustrated in Figure 21. Sensor readingsare first fed into the anomaly detection process 
using theisolation forest (IF). If no anomaly is detected, the systemapplies the data-driven fault 
diagnosis as outlined in Section3.1. However, if an anomaly is detected, a backup model-basedfault 
diagnosis, as shown in Figure 19, is initiated. Oncesufficient new data with different fault scenarios are 
collected,the data-driven fault diagnosis model is retrained with the

updated training set to enhance its fault diagnosis capabilities under the new conditions.
3.3. Challenges in Data-Driven Fault Diagnosis. Datadriven methods have shown great promise in fault 
diagnosis due to their ability to model complex systems using historicaldata. However, their 
effectiveness is highly dependent on thequality and diversity of the training data. Without a diversedata 
set that includes faulty scenarios across a wide range ofoperational conditions, these models often fail to 
generalize,leading to poor performance in real-world applications, asshown in Figure 15. When 
properly trained with comprehensive data that captures all potential fault types andoperating conditions, 
data-driven models excel in faultdetection and diagnosis, offering accurate solutions, as shownin Figure 
20. The key lies in ensuring that the training datacover all critical scenarios.The question arises whether 
data are required for all faultsizes. To explore this, a test was conducted using a training setwith only 
larger fault sizes (fault 1 at 10 and fault 2 at 0.6),while the testing set comprised smaller faults (fault 1 at 5 
andfault 2 at 0.4). Figure 22 illustrates the fault diagnosis resultsfor both fault 1 and fault 2, comparing 
the actual fault values,predicted fault values, and residual signals. This test providesinsight into how 
well the models generalize to smaller faultsizes when they are trained only on larger faults.In Figure 22b, 
fault 2 is introduced at the 2 h mark, with thegreen line indicating the actual fault size of 0.6. Prior to 
this,the noise in both the predicted fault signal (red line) and theresidual signal (blue line) stays well 
below the threshold of 0.3,indicating no false positives before the fault occurs. After 2 h,both the 
predicted fault signal and the residual signal increase,with the red line overestimating the actual fault 
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size of 0.4,while the blue residual signal fluctuates but stays close to theexpected value of 0.4. Similar 
results were achieved usingKNN; additionally, ANN and RNN were applied, yielding comparable 
results (not included in the article).
This phenomenon highlights the importance of having diverse training scenarios for accurate fault 
diagnosis, arequirement that may be difficult to achieve in real industrialsettings. The question of what 
constitutes the minimal trainingset catches our attention. Further studies are needed to addressthis.

4. CONCLUSION
In this study, the effectiveness of data-driven methods such as RF and KNN for fault diagnosis in a CSTR 
chemical reactorsystem is evaluated compared to model-based residualgenerators. The focus is on 
detecting, isolating, and estimatingthe size of two key faults: fault 1, a coolant inlet temperaturespike, 
and fault 2, a decrease in the 3-picoline feedconcentration. Both RF and KNN demonstrated 
strongperformance under nominal conditions, accurately identifyingfaults and estimating their sizes. 
However, both data-drivenand model-based approaches faced difficulties after a change inthe heat 
transfer coefficient (U), a process condition change,which led to misaligned predictions and false 
positives. Toaddress this, an IF algorithm is employed for anomalydetection, allowing system model 
recalibration and restoringthe accuracy of the model-based residual generators. For datadriven methods, 
the inclusion of new data sets with updatedparameters in the training successfully restored their 
performance.
Overall, while model-based methods remain reliable due to their deep understanding of system 
dynamics, data-drivenapproaches offer scalability and efficacy without the need fordetailed system 
models. The integration of both methods into a combined framework offers an optimal solution.
A challenge with data-driven methods is their reliance on diverse training data sets; without sufficient 
variety, faultdiagnosis accuracy diminishes, as seen in overestimations whentrained only on larger fault 
sizes. Future work will focus onenhancing the robustness of data-driven methods, particularlyby 
optimizing training sets with comprehensive fault scenariosand improving their ability to handle system 
parameterchanges to achieve fault diagnosis accuracy comparable tomodel-based approaches. And we 
will develop and test newmodels to enhance sensitivity and accuracy in detecting smallerfaults. The 
sensitivity analysis of heat transfer efficiency will beconducted when sufficient data covering a broader 
range of Uvalues becomes available. To further enhance the applicabilityof our approach, future work 
will explore strategies forreducing prediction delays, such as optimizing modelarchitectures for 
efficiency or implementing online learningtechniques to enable real-time performance. We will 
alsointegrate data-driven and model-based methods throughadaptive model adjustment, where data-
driven techniquesdynamically refine model parameters, and physics-guidedlearning, which implants 
physical constraints into neural networks. Additionally, transfer learning using model-based simulations 
will be explored to improve data-driven models inscenarios with limited real-world fault data.
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Celebrating the Birth Centenary of Quantum Mechanics: A 
Historical Perspective
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A B S T R A C T

In July 1925, Werner Heisenberg submitted a paper to Zeitschrift f ür Physik entitled ‘On quantum-

theoreticalreinterpretation of kinematic and mechanical relationships’, thusgiving birth to quantum 

mechanics. In the following year, buildingon de Broglie’s wave-particle duality, Erwin Schrödinger 

developedwave mechanics, and soon, Max Born provided a probabilisticinterpretation of the wave 

function. The theory was furtherenriched by the exclusion principle of Wolfgang Pauli and theuncertainty 

principle of Heisenberg, which ultimately led to thedevelopment of relativistic quantum mechanics by 

Dirac. TheCopenhagen Interpretation created a probabilistic framework forunderstanding the theory. 

Over the past century, quantummechanics has paved the way for advances in quantum fieldtheory, 

computing, and modern technologies. This historical narrative provides insights into the complex 

discovery process that led to the development of quantum mechanics, which can potentially guide novel 

breakthroughs amid challenging conceptual struggles,as seen in the field of artificial intelligence today.

1. WHY IS THE HISTORY OF QUANTUM MECHANICS IMPORTANT?
This year, we mark a historic occasion: the centenary of the birth  of quantum mechanics. A hundred 
years ago, the field ofquantum mechanics emerged through the pioneering efforts ofprimarily Werner 
Heisenberg, Erwin Schrödinger, and MaxBorn.1 Their groundbreaking contributions unraveled 
themysteries of the atomic world, transforming our understandingof reality itself. Quantum mechanics 
stands as one of humanity’smost profound intellectual achievements. Its founding 
principles�quantization, wave-particle duality, probability, uncertainty, and superposition� 
dramatically redefined our understanding of the universe. Jagdish Mehra, the authoritativechronicler of 
the history of quantum theory, declared:1,2“The birth of quantum mechanics presents us with one ofthe 
most remarkable episodes in the history of science; it isas rich, complex, dramatic, and touching as any in 
thehistory of human thought.”Quantum mechanics, with its further development asquantum field 
theory, is a magnificently beautiful theory,perhaps second only in its beauty to the general theory 
ofrelativity. But quantum mechanics is far more surprising thangeneral relativity in its strangeness with 
concepts such asquantum entanglement − “spooky action-at-a-distance,” as Einstein put it-, that whisper 
yet-to-be-revealed deeper secrets of reality that seem almost mystical.
In the July 1925 paper,3 Heisenberg introduced matrix mechanics, marking the first comprehensive 
formulation ofquantum theory that focused on observable quantities such asenergy and spectral 
transitions. Between November 1925 andJanuary 1926, Erwin Schrödinger developed wave presenting 
the now-famous Schrödinger equation, an alternative, yet equivalent, description of quantum 
systems.Soon, Max Born provided the probabilistic interpretation of thewave function, reshaping our 
notion of determinism andcausality in physics.
These milestones were part of an extraordinary period of intellectual explosion, during which luminaries 
such as NielsBohr, Paul Dirac, and Wolfgang Pauli contributed to theframework that continues to 
underpin modern physics.1,2 Thiscentennial is an opportunity to reflect on the profound humancapacity 
for imagination and discovery. It is also an opportunityto marvel at “the unreasonable effectiveness of 
mathematics inthe natural sciences,” as Eugene Wigner wondered!4
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This year, let us take a moment to appreciate and enjoy this crowning achievement of the human mind, 
which reveals themagnificent beauty of the hidden order of the cosmos. Thispaper is written with this 
objective in mind. Another importantreason for studying the early history of quantum mechanics isthat it 
is one of the rare occasions when a considerable wealth offirst-hand accounts of momentous discoveries 
is available.1Fortunately, many of the original architects of quantum theorylived long lives and 
documented their discoveries in detail inpapers, autobiographies, and interviews. These accounts 
offervaluable insights into the discovery process that can help guidenovel discoveries during periods of 
profound conceptualdifficulties and confusion, such as the current state of artificialintelligence.
Therefore, I will quote the original writings of the main protagonists wherever appropriate, as I am 
convinced that theirown expressions lend authenticity and clarity to the very murkyprocesses behind 
great conceptual discoveries. My hope is togive the reader a sense of what is involved in achieving 
majorconceptual breakthroughs. As Max Planck said:“In the history ofscience, a new concept never 
springs up in its complete and finalform, as in the ancient Greek myth, Pallas Athene sprang upfrom the 
head of Zeus.” Heisenberg further elaborated:5“The history of physics is not only a sequence 
ofexperimental discoveries and observations, followed bytheir mathematical description; it is also a 
history ofconcepts. For an understanding of the phenomena, the firstcondition is the introduction of 
adequate concepts.Only with the help of correct concepts can we really knowwhat has been observed. 
When we enter a new field, veryoften, new concepts are needed. As a rule, new concepts comeup in a 
rather unclear and undeveloped form. Later, theyare modified, sometimes they are almost 
completelyabandoned and are replaced by some better concepts,which then, finally, are clear and well-
defined.”
In the remainder of this Commentary, I provide a historical perspective that highlights key 
breakthroughs. This perspectiveis meant for those unfamiliar with quantum mechanics or itshistorical 
development. It is not aimed at experts. The objectiveof this paper is not to teach readers quantum 
mechanics but onlyto expose them to the central ideas, their historical evolution,and the conceptual 
struggles, with a moderate amount ofmathematics to illustrate these points. Given the scope of 
thisperspective and its constraints, I will not discuss themathematical details, referring the readers to 
more comprehensive sources.1,6−10 Furthermore, this is a personalperspective that reflects what I 
consider important andinteresting developments. However, I believe that mostquantum experts agree 
with the observations made in this paper.

2. TWO CLOUDS IN THE HORIZON: THE “1900-MOMENT”
At the dawn of the 20th century, on April 27, 1900, Lord Kelvin delivered an important lecture at the 
Royal Institution inLondon,11 summarizing the status of physics with the title“Nineteenth-Century 
Clouds Over the Dynamical Theory ofHeat and Light.” The “clouds” that bothered him were the 
twotroublesome experiments that did not agree with the theoreticalpredictions: (i) the null result of the 
Michelson-Morleyexperiment, which could not detect the motion of the Earththrough ether, and (ii) the 
ultraviolet catastrophe of blackbody radiation. Lord Kelvin correctly recognized the gravity of the 
situation and appreciated the profound uncertainty in the fundamentals of classical physics.As we know, 
these two “clouds” revolutionized physics, indeed all science, over the following three decades.12 
The first “cloud” led to the birth of the theory of relativity, completelyupending our understanding of 
space, time, gravity, and thecosmos itself. The second gave us quantum mechanics, openingthe secret 
door to an almost“magical”realm that we did not evenknow existed all around us all of the time. In fact, 
quantumtheory was born soon in the same year, 1900, when Max Planckpresented his quantum 
hypothesis at a meeting of the GermanPhysical Society on December 14th, initiating the dispersal of the 
second cloud.13
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This scientific drama unfolded like a well-written suspense thriller full of plot twists, turns, and 
surprising conceptual leaps,except that it was written in the language of mathematics,namely, linear 
algebra, differential equations, and probabilitytheory, echoing Galileo’s declaration:14“Philosophy is 
written in this grand book, I mean theuniverse, which stands continually open to our gaze, but itcannot be 
understood unless one first learns to comprehendthe language in which it is written. It is written in 
thelanguage of mathematics.”In the annals of history, certain periods stand out as inflectionpoints, times 
when scientific, technological, or social changesdrastically altered the trajectory of our civilization. That 
momentin 1900, when Kelvin announced that all was not well in physics,was such a tipping point. The 
innovations that followed, both theory and in practical applications, continue to transform oursocieties 
and economies profoundly. There is no other thirtyyear period in history where our understanding of the 
universewas so dramatically upended as it was during 1900−1930.

3. ACT I: THE BIRTH OF QUANTUM THEORY (1900−1913)
Between 1900 and 1930, physicists were compelled to abandon classical mechanics in favor of quantum 
mechanics because theformer could not predict or explain the atomic structure,spectrallines, and dual 
nature of matter and radiation as both waves andparticles. This drama of frenetic intellectual activity 
occurred infour surprising breakthroughs. In the following sections, Iprovide an overview of these key 
advances.

3.1. Max Planck and Quantum Theory (1900). As noted, the roots of quantum mechanics can be 
traced to the “cloud”thatLord Kelvin worried about in the context of blackbody radiation.A blackbody is 
an idealized object that absorbs and emitselectromagnetic radiation at all frequencies. Classical 
physicspredicted the intensity of this radiation using the Rayleigh-Jeanslaw:

where I(λ, T) is the radiation intensity, c is the speed of light, kB is Boltzmann’s constant, T is the 
temperature, and λ is thewavelength of the radiation. This equation worked well at longwavelengths but 
diverged to infinity at short wavelengths, asshown in Figure 1, known as the ultraviolet catastrophe, a 
termcoined by Paul Ehrenfest in 1911.
Max Planck (Figure 2) got interested in this problem and, after a six-year struggle, introduced a 
revolutionary hypothesis:energy is not emitted continuously but in discrete Planck accomplished this in 
two critical steps, presented at the
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German Physical Society meetings: (i) Discovering the correct radiation formula (on October 19, 1900) 
and (ii) Providing itsconceptual justification via the quantum hypothesis (onDecember 14, 1900).Let us 
hear about the first step from Planck himself from hisscientific autobiography:17“In fact, my previous 
studies of the Second Law ofThermodynamics came to stand me in good stead now,for at the very outset 
I hit upon the idea of correlating notthe temperature but the entropy of the oscillator with itsenergy. It was 
an odd jest of fate that a circumstance whichon former occasions I had found unpleasant, namely, thelack 
of interest of my colleagues in the direction taken by myinvestigations, now turned out to be an outright 
boon. Whilea host of outstanding physicists worked on the problem ofspectral energy distribution, from 
both the experimental andtheoretical aspects, every one of them directed his effortssolely toward 
exhibiting the dependence of the intensity ofradiation on the temperature On the other hand, I suspected 
that the fundamental connection lies in the dependence of entropy upon energy. Asthe significance of the 
concept of entropy had not yet come tobe fully appreciated, nobody paid any attention to themethod 
adopted by me, and I could work out mycalculations completely at my leisure, with 
absolutethoroughness, without fear of interference or competition ...In this way, a new radiation formula 
was obtained, and Isubmitted it for examination to the Berlin Physical Society,at the meeting on October 
19, 1900.”Although Rudolf Clausius introduced the concept of entropyin 1864, it remained undervalued 
by the scientific community,surprisingly, for nearly three decades. This highlights thesignificant amount 
of time required for revolutionary to gain widespread acceptance. Reflecting on this, Planck later
remarked rather sardonically:17“A new scientific truth does not triumph by convincing itsopponents 
and making them see the light, but rather becauseits opponents eventually die out, and a new generation 
growsup that is familiar with it.”Planck’s new radiation law is given by

(h is Planck’s constant) correctly described experimental data at all wavelengths and resolved the 
ultraviolet catastrophe.However, Planck was unsatisfied with the clever guessworkthat led to its 
discovery. He wanted to know its significance, and so he proceeded with the second step:17“But even if 
the absolutely precise validity of the radiationformula is taken for granted, so long as it had merely 
thestanding of a law disclosed by a lucky intuition, it could notbe expected to possess more than a formal 
significance. Forthis reason, on the very day that I formulated this law, Ibegan to devote myself to the 
task of investing it with a truephysical meaning. This quest automatically led me to studythe interrelation 
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of entropy and probability�in other words, to pursue the line of thought inaugurated byBoltzmann.Since 
the entropy S is an additive magnitude but theprobability W is a multiplicative one, I simply 
postulatedthat S = k · log W, where k is a universal constant; and Iinvestigated whether the formula for W, 
which is obtainedwhen S is replaced by its value corresponding to the aboveradiation law, could be 
interpreted as a measure ofprobability ... It is, understandably, often called Boltzmann’sconstant. 
However, this calls for the comment that Boltzmann never introduced this constant, nor, to the best of my 
knowledge, did he ever think of investigating itsnumerical value.”Interestingly, the famous equation S = 
k log W, which isinscribed on Boltzmann’s tomb in Vienna, was not stated in thisform by Boltzmann. It 
was Planck who expressed the Boltzmannresult in this now familiar form.16Applying Boltzmann’s 
reasoning about entropy from his 1877paper19 to blackbody radiation, Planck was led to the concept 
ofdiscrete packets of energy, which he termed quanta.13,20 He was,however, uncomfortable with this 
idea as he was aware that hewas violating the continuity principle,21 a fundamental principlethat dates 
back to Leibnitz, who famously said:22 “Natura nonfacit saltus” (Latin for “nature does not make 
jumps”). This principle also serves as the foundation for differential and integral calculus.Planck alerts 
us to this crucial feature of his theory in hisDecember 14, 1900, paper:13“If E [the total energy] is 
considered to be a continuousdivisible quantity, this distribution is possible in infinitelymany ways. We 
consider, however � this is the mostessential point of the whole calculation � E to be composedof a well 
defined number of equal parts [of magnitude ϵ]and use thereto the constant of nature h = 6.55 × 10−27 
ergsec [setting ϵ = hν].” About his break with classical physics tradition and his embracing of 
Boltzmann’s “atomistic” ideas, which he had beencritical of for many years, Planck would later 
recall:“Briefly summarized, what I did can be described as simplyan act of desperation. By nature, I am 
peacefully inclinedand reject all doubtful adventures. But by then I had beenwrestling unsuccessfully for 
six years (since 1894) with theproblem of equilibrium between radiation and matter, and Iknew that this 
problem was of fundamental importance tophysics; I also knew the formula that expresses the 
energydistribution in normal spectra. A theoretical interpretationtherefore had to be found at any cost, no 
matter how high.It was clear to me that classical physics could offer nosolution to this problem and 
would have meant that all ofthe energy would eventually transfer from matter intoradiation. In order to 
prevent this, a new constant isrequired to ensure that energy does not disintegrate. But theonly way to 
recognize how this can be done is to start from adefinite point of view. This approach was opened to me 
bymaintaining the laws of thermodynamics. The two laws, itseems to me, must be upheld under all 
circumstances. Forthe rest, I was ready to sacrifice every one of my previousconvictions about physical 
laws.”Although historians continue to debate how much Planckrealized the significance of his quantum 
hypothesis,13,20,21 ErwinPlanck later recalled what his father told him soon after 
hisdiscovery:20“Either what I have found out now is complete nonsense orit might be one of the greatest 
discoveries in physics sinceNewton.”
Planck proposed that the energy of a radiation mode isquantized and proportional to its frequency:

where h is Planck’s constant and ν is the frequency of the radiation. This assumption prevented infinite 
energy at shortwavelengths and correctly described blackbody radiation. Usingenergy quantization, 
Planck derived the formula presented above, now expressed in terms of frequency ν:



Max Planck was awarded the 1918 Physics Nobel Prize for his discovery. Although Planck gave birth to 
quantum theory, heremained a reluctant revolutionary for a long time, viewingquantization only as a 
“mathematical trick” rather than as afundamental law of nature. After all, he was very much a part ofthe 
old guard and therefore was hesitant to abandon the “sacred”principle of continuity. It was only much 
later that he camearound to accepting the new reality.

3.2. Albert Einstein and the Photoelectric Effect (1905). 
On the other hand, the Young Turk who followed Planck next in this exciting drama was a rebellious 
iconoclast who was rearing to upend the very foundations of physics, notjust radiation theory. Enter 
Albert Einstein (Figure 3), a 26-year

old unknown clerk at the Swiss Patent Office in Bern. While Planck saw quantization as just a 
“mathematical trick”, not afeature of physical nature, Einstein took it more seriously as afundamental 
property of nature. He was open to such radicalrethinking as he was, at the same time, busy overthrowing 
theNewtonian concepts of space and time in his new theory ofspecial relativity, which dispersed the first 
“cloud” that LordKelvin worried about.
In his Annus Mirabilis, 1905, Einstein extended Planck’s idea and proposed that light itself consists of 
quantized particlescalled photons, each carrying energy E = hν, to solve a puzzlingresult in the 
photoelectric effect, where light incident on a metalsurface ejects electrons. The classical wave theory of 
lightpredicted that increasing the light intensity should increase theelectron energy. However, 
experiments showed that noelectrons are emitted below a threshold frequency, regardlessof intensity. 
They further showed that the electron energydepends on the frequency, not the intensity. The higher 
lightintensity increased the number of emitted electrons, but nottheir individual energy.Einstein’s theory 
treats the photoelectric effect as a one-toone interaction between a photon and an electron. The 
energybalance equation is

where hν is the energy of the incoming photon, W (or work function) is the minimum energy required to 
free an electronfrom the metal, and Ek is the maximum kinetic energy of theemitted electron. This 
equation explained all of the experimentalresults. Reflecting on his groundbreaking papers from 
1905,which included his first two on relativity, he regarded only thelight-quanta paper as genuinely 
revolutionary. Einstein wasawarded the Nobel Prize in Physics in 1921 for this discovery. Itis interesting 
to note that the prize was not for his work onrelativity.From the perspective of the evolution of quantum 
theory,Einstein’s theory confirmed the particle nature of light,supporting the idea that light exhibits both 
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wave and particleproperties, i.e., wave-particle duality. This paved the way for theacts that followed 
next.

3.3.Niels Bohr and theHydrogen Atom (1913). In 1897, J. J. Thomson at Cambridge discovered the 
electron in cathoderay tube experiments. Ernest Rutherford, who had trained underThomson, showed in 
his gold foil experiment at Manchester in1911 that the atom is mostly an empty space with a tiny, 
dense,positively charged nucleus with orbiting electrons. However,classical electrodynamics predicted 
that electrons should spiralinto the nucleus due to radiation loss. Furthermore, the atomicspectra of 
hydrogen showed discrete spectral lines, contradictingclassical physics, which predicted a continuous 
spectrum.In 1911, Niels Bohr (Figure 4) arrived in England to study atomic structure under Thomson 
first and with Rutherford later

in Manchester. In 1913, in a series of three papers, Bohr proposed an atomic model that resolved the 
contradictions.While Einstein extended Planck’s quantum hypothesis tophotons, Bohr further extended 
it to electrons by introducingquantized orbits for electrons. Bohr’s atomic model introducedthree key 
quantum postulates:25
(i) Electrons move in fixed circular orbits around the nucleus,where their angular momentum is 
quantized:

where L is the electron’s angular momentum, ℏ = h/2π is the reduced Planck constant, and n is the 
principal quantum numberspecifying the allowed orbits. This assumption preventedelectrons from 
spiraling into the nucleus, ensuring atomicstability.
(ii) The total energy of an electron in orbit is also quantized and given by

where En is the energy of an electron in orbit n, and −13.6 eV is the ground-state energy of hydrogen 
(energy levels are negative,meaning that electrons are bound to the nucleus). Thisquantization explains 
why the atoms do not radiate continuously.
(iii) Electrons can transition between orbits, i.e., performquantum jumps, by absorbing or emitting a 
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photon of energy:

where ν is the frequency of emitted/absorbed light and Ei and Ef are the initial and final energy levels. 
This correctly explainedhydrogen’s spectral lines, known as the Balmer series, given by

where RH is the Rydberg constant.
Thus, the Bohr model successfully explained the atomic stability and correctly predicted hydrogen 
spectral lines.26 Mostimportantly, Bohr had conceptually generalized Planck’s“mathematical trick” 
and made quantization a fundamentalfeature of nature. Bohr was awarded the Nobel Prize in Physicsin 
1922. With this, the first act ends, and the stage is set for evenmore surprising twists and turns.

4. ACT II: DE BROGLIE AND WAVE-PARTICLE DUALITY (1923−1924)
About ten years after Bohr, the next crucial conceptual breakthrough came in the form of further 
generalization of thewave-particle duality of light. In 1923, Prince Louis de Broglie(Figure 5) 
introduced the shocking concept of matter waves,

which impressed Einstein so much that he remarked:27 “He has lifted a corner of the great veil.” Put 
simply, de Broglie askedhimself: If light, which was thought of as a wave, can exhibitparticle-like 
behavior (as photons), why cannot particles likeelectrons exhibit wave-like behavior? He defended this 
idea inhis Ph.D. thesis on 25 November 1924, in Paris.28 In this thesis,he proposed wave-particle duality 
for matter, suggesting that“matter waves” obey the equation

where λ is the de Broglie wavelength and p is momentum. In 1927, Davisson and Germer, and 
independently Thomson andReid, confirmed this idea in electron diffraction experiments. deBroglie 
received his Nobel Prize in Physics in 1929, a mere fiveyears after his Ph.D. defense. Davisson and 
Thomson received theirs in 1937.



One question physicists and historians have puzzled over for many years is why de Broglie, who 
discovered matter waves, didnot proceed to discover Schrödinger’s wave equation. Althoughwe cannot 
be certain, experts have identified several reasons afterconducting careful studies. Here, I quote Olivier 
Darrigol:27“A first element of the answer is that, notwithstanding withhis grand analogy between 
dynamics and optics, he (deBroglie) was shy in adventuring beyond the approximationof geometrical 
optics. He focused on retrieving results of thereceived quantum theory, such as the 
Bohr−Sommerfeldconditions, and he underplayed the more disturbingconsequences of his concept of 
matter waves.
Another possible obstacle to his developing a wave theory of matter was his conviction that both light 
and matter had adual nature, implying the synchronous motion of waves andparticles. This duality 
focused on the interplay betweenwaves and particles rather than on the search for a newwave equation.
Third and most importantly, de Broglie believed that the analogy between light and matter implied the 
electromagnetic nature of his matter waves. Consequently, he alsobelieved that matter waves obeyed the 
d’Alembertianequation of electromagnetism. Direct evidence of thisconviction is found in a note of 
1925 in which he describesthe intrinsic oscillation of an electron in its rest frame as thestationary 
superposition of the retarded and advancedsolutions of the d’Alembertian equation.The same heuristic 
principle, the analogy between matterand light, led de Broglie to the matter waves and preventedhim 
from seeking a specific equation for these waves!”
Therein lies a very important lesson in the use of analogies to discover new conceptual breakthroughs. 
One should not take ittoo literally or expect an exact analogy of the new phenomenonin every detail. 
Although de Broglie was correct in reasoning thatthe wave-particle duality of light implied a similar 
duality forelectrons (matter, in general), he took this analogy too far toreason that matter waves would 
also be electromagnetic innature. This is where the analogy broke down. Fortunately,Schrödinger did 
not make this mistake!

5. ACT III: THE BIRTH OF QUANTUM MECHANICS (1925−1927)
Finally, we arrive at the main event, the birth of quantum mechanics. The key characters are Werner 
Heisenberg, ErwinSchrödinger, Max Born, Paul Dirac, and Wolfgang Pauli. Even adecade after the 
Bohr atom, atomic phenomena have remainedlargely unexplained, with many disturbing 
fundamentalquestions. There was no coherent mathematical theory yet,only a collection of seemingly 
ad hoc rules of quantum behavior.The transition from classical mechanics to quantum 
mechanicsremained an elusive goal before 1925.
5.1. Heisenberg and Born: Matrix Mechanics. The first major breakthrough in resolving this impasse 
was initiated by23-year-old Heisenberg (Figure 6) in his historic 1925 papernoted earlier,3 marking the 
birth of quantum mechanics.Heisenberg’s innovative idea, guided by Bohr’s CorrespondencePrinciple, 
was to retain classical mechanics equations but replacethe classical position coordinate with a quantum-
theoreticalquantity. The new position quantity contains information aboutthe measurable line spectrum 
of an atom rather than theunobservable orbital of the electron. He devised a specialkinematical rule for 
multiplying position quantities. Mehra givesa vivid description of this momentous discovery:
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“With the coming of spring in 1925, Heisenberg had developed a case of severe hay fever, which would 
just notleave him, and he decided to take a week or ten days off inJune 1925 at the rocky island of 
Helgoland in the NorthSea. At Helgoland, not only did he cure his hay fever butwiped the nose clean of 
the chronic colds of erstwhileproblems of atomic mechanics ...At Helgoland, Heisenberg divided his 
time in taking longwalks, reading Goethe’s West-Ostlicher Divan, and seekingto give his vague ideas on 
quantum mechanics a moredefinite shape. There he solved two problems ...The example of the 
anharmonic oscillator showed him thata dynamical problem in quantum theory could be solvedwith the 
help of his scheme.
As he (Heisenberg) recalled:30 ‘It was almost three o’clock in the morning before the final result of my 
computations laybefore me. The energy principle had held for all of the terms,and I could no longer 
doubt the mathematical consistencyand coherence of the kind of quantum mechanics to whichmy 
calculations pointed. At first, I was deeply alarmed. had the feeling that, through the surface of atomic 
phenomena, I was looking at a strangely beautiful interiorand felt almost giddy at the thought that I now 
had to probethis wealth of mathematical structures nature had sogenerously spread out before me. I was 
far too excited tosleep, and so, as a new day dawned, I made a trip to thesouthern tip of the island, where I 
had been longing to climba rock jutting out into the sea. I now did so without toomuch trouble, and 
waited for the sun to rise.’”After he returned from Helgoland, Heisenberg gave his paperto Max Born 
(Figure 7) in early July for his opinion. Heisenbergwas working as Born’s research assistant at the 
University ofGöttingen at that time. Born had been keenly aware of thedifficulties in quantum theory for 
some time as he wrote:32 “Itbecomes increasingly probable that not only new assumptionswill be 
needed in the sense of physical hypotheses, but that theentire system of concepts of physics must be 
rebuilt from theground up.” So, when he saw Heisenberg’s new mathematical
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formulation of kinematics of quantum systems, Born immediately recognized its importance, as he 
recalls:2 “I began to ponder about his symbolic multiplication andwas soon involved in it. I thought the 
whole day and couldhardly sleep at night ... In the morning I suddenly saw thelight: Heisenberg’s 
symbolic multiplication was nothing butthe matrix calculus, well-known to me since my student 
daysfrom the lectures of Rosanes in Breslau.”A few days later, on July 19, 1925, Born traveled 
fromGöttingen to Hanover to attend a meeting of the GermanPhysical Society, where he informed 
Wolfgang Pauli about thematrices. Pauli was critical:2“Yes, I know that you are fond of a tedious and 
complicatedformalism. You are only going to spoil Heisenberg’s physicalideas by your futile 
mathematics.”To a modern physicist, it is astonishing that Heisenberg didnot know about matrices when 
he made his great discovery, as headmits:5“At that time I must confess I did not know what a matrixwas 
and did not know the rules of matrix multiplication.”As Fedak and Prentis describe,34 it was Born who 
recognizedthat the next step was to formalize Heisenberg’s theory using thelanguage of matrices, which 
he did with his student PascualJordan35 after Pauli turned him down.2 This was followed byanother 
paper by Born, Heisenberg, and Jordan.36 It was alsoBorn who coined the name Quantum Mechanics 
for the newfield.34,37 Born expressed Heisenberg’s results in a more elegantform using the matrix 
notation. If Q and P are the position andmomentum matrices, they satisfy

where I isthe identity matrix, and the quantity [P,Q]is known as the commutator. It is important to note 
that using matrices is notjust a matter of mathematical elegance. What Heisenberg haddiscovered 
inadvertently was one of the fundamental aspects ofquantum reality: its dynamic variables are 
represented byoperators (and hence matrices), unlike classical variables, whichare represented by 
scalars. This critical feature was independently recognized by Paul Dirac around the same time38 (more 
on this below). These papers introduced a novelapproach to atomic Hamiltonian mechanics using non 
commutative quantum methods. This marked the beginning of a new phase in theoretical physics, 
characterized by the use ofHermitian matrices, commutators, and eigenvalue problems askey 
mathematical tools in atomic theory.
This noncommutativity of position and momentum matrices led to a major breakthrough two years later, 
in 1927, whileHeisenberg was visiting the Niels Bohr Institute in Copenhagen.He describes what 
happened one late evening as he took a strollthrough Faelledparken, the lovely park behind the 
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institute:30 
“It must have been one evening after midnight when Isuddenly remembered my conversation with 
Einstein and  particularly his statement, ‘It is the theory which decideswhat we can observe.’ I was 
immediately convinced that thekey to the gate that had been closed for so long must besought right here. 
I decided to go on a nocturnal walkthrough Faelled Park and to think further about the matter.We had 
always said so glibly that the path of the electron inthe cloud chamber could be observed. But perhaps 
what wereally observed was something much less. Perhaps we merelysaw a series of discrete and ill-
defined spots through whichthe electron had passed. In fact, all we do see in the cloudchamber are 
individual water droplets, which must certainlybe much larger than the electron. The right question 
shouldtherefore be: Can quantum mechanics represent the fact thatan electron finds itself approximately 
in a given place andthat it moves approximately with a given velocity, and canwe make these 
approximations so close that they do not cause experimental difficulties? 
A brief calculation after my return to the Institute showed that one could indeed represent such situations 
mathematically and that the approximations are governed by whatwould later be called the uncertainty 
principle of quantummechanics: the product of the uncertainties in the measuredvalues of the position 
and momentum (i.e., the product ofmass and velocity) cannot be smaller than Planck’sconstant. This 
formulation, I felt, established the muchneeded bridge between cloud chamber observations and 
themathematics of quantum mechanics. True, it had still to beproved that any experiment whatsoever 
was bound to set upsituations satisfying the uncertainty principle, but this struckme as plausible a priori 
since the processes involved in theexperiment or the observation had necessarily to satisfy thelaws of 
quantum mechanics. On this presupposition,experiments are unlikely to produce situations that do 
accord with quantum mechanics. ‘It is the theory which
decides what we can observe.’ I resolved to prove this bycalculations based on simple experiments 
during the nextfew days.”The uncertainty principle states that there is an intrinsic limitto how precisely 
we can simultaneously measure the position qand the momentum p of a particle. Heisenberg derived the
following inequality:

where Δq is the standard deviation of position and Δp is the standard deviation of momentum. If we try to 
measure aparticle’s position very precisely (Δq small), the uncertainty inmomentum Δp increases. 
Conversely, if we measure themomentum precisely, the uncertainty in the position grows.This principle 
is not due to measurement errors but rather aninherent property of quantum systems.
Given this history of the uncertainty principle and its close association with the Niels Bohr Institute, I 
found it so fitting, in alighter vein, to see this cartoon (Figure 8) displayed on a door ofthe Institute during 
my visit in August of 2022.

There are serious implications captured by this fundamental property of nature. (i) Observer’s 
interference: the very act measurement disturbs the system. (ii) Wave-particle duality: position and 
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momentum cannot be simultaneously well-defined.(iii) Limits of classical concepts: the classical idea of 
a trajectorydoes not hold in the quantum realm.
Heisenberg would later speak in sheer awe of the startling simplicity and beauty of the new theory:30“If 
nature leads us to mathematical forms of great simplicityand beauty � by forms, I am referring to 
coherent systemsof hypotheses, axioms, etc. � to forms that no one haspreviously encountered, we 
cannot help thinking that theyare ‘true,’ that they reveal a genuine feature of nature ... Youmust have felt 
this too: the almost frightening simplicity andwholeness of the relationships which nature 
suddenlyspreads out before us and for which none of us was in theleast prepared.”Heisenberg was 
awarded the 1932 Nobel Prize in Physics.Given Born and Jordan’s pivotal role in the discovery 
ofquantum mechanics, it is natural to wonder why they were leftout. In 1933, Heisenberg wrote Born 
saying:39“The fact that I am to receive the Nobel Prize alone, forwork done in Göttingen in 
collaboration�you, Jordan, andI�this fact depresses me, and I hardly know what to writeto you. I am, o f 
course, glad that our common now appreciated and I enjoy the recollection of the beautiful time of 
collaboration. I also believe that all good physicistsknow how great was your and Jordan’s contribution 
to thestructure of quantum mechanics�and this remainsunchanged by a wrong decision from outside. 
Yet I myselfcan do nothing but thank you again for all the finecollaboration and feel a little 
ashamed.”Fortunately, Born was awarded the Nobel Prize in Physics in1954 for his fundamental 
research in quantum mechanics,especially for his statistical interpretation of the wave function (as 
discussed below). Engraved on Max Born’s tombstone in Göttingen is a one-line epitaph: pq − qp = 
h/2πi.
5.2. Schrödinger’s Wave Mechanics (1926). 1925 was already an amazing year, but the quantum 
mechanics revolutionwas not yet finished for the year. Following a line of attack that isdifferent from the 
matrix mechanics formalism, ErwinSchrödinger (Figure 9) was developing something veryinteresting. 
Inspired by de Broglie’s matter waves, he introducedwave mechanics, and the fundamental equation 
governingquantum evolution, the Schrödinger equation:



explains energy quantization and atomic structure. Schrödinger showed that wave mechanics is 
mathematically equivalent tomatrix mechanics.
Just as he proposed the matrix formalism to clarify Heisenberg’s quantum mechanics, Max Born once 
again steppedup and clarified the meaning of the wave function in wavemechanics in 1926.41 Born 
interpreted the wave function ψ(x, t)as a probability amplitude. The probability of finding a particle at 
position x is given by:

This marked a fundamental conceptual shift from a deterministic perspective of the universe in classical 
mechanicsto a probabilistic view of quantum mechanics. It is indeed quiteremarkable that such a 
fundamental interpretation thatcompletely revolutionized our view of the universe wasmentioned in a 
mere footnote of Born’s 1926 paper.41 In fact,there is a fascinating backstory to this. In a paper written 
on theoccasion of the birth centenary of Born in 1982, Abraham Paisobserved:42
“Then, Born declares: ‘ϕmn (i.e. the wavefunction, ψ(x)) determines the probability for the scattering of 
the electronfrom the z-direction into the direction [θ, ϕ].’At best, this statement is vague. Born added a 
footnote inproof to his evidently hastily written paper: ‘A more preciseconsideration shows that the 
probability is proportional tothe square of ϕmn.’ He should have said ‘absolute square.’But he clearly 
had got the point, and so the correctexpression for the transition probability concept enteredphysics via a 
footnote.
I shall return shortly to the significant fact that originally associated probability with ϕmn rather than 
with |ϕmn|2. As I learned from recent private discussions, Dirachad the very same idea at that time. So 
did Wigner, whotold me that some sort of probability interpretation was thenon the minds of several 
people, and that he, too, had thoughtof identifying ϕmn or |ϕmn| with a probability. When Born’spaper 
came out and |ϕmn|2 turned out to be the relevantquantity, ‘I was at first taken aback but soon realized 
thatBorn was right,’ Wigner said.”It is absolutely incredible and deeply instructive that such 
afundamental feature of quantum mechanics, namely, itsprobabilistic nature, was initially guessed 
wrong even by giantslike Born, Dirac, and Wigner, and was subsequently corrected ina footnote only 
during the proof stage of the manuscript. Again,this teaches us valuable lessons about the nature of the 
discoveryprocess, particularly fundamental concepts.
Over the years, many have wondered why Schrödinger, of alltheoretical physicists, took up de Broglie’s 
ideas and developedthem into wave mechanics.43 We briefly saw above why deBroglie himself did not 
do it. Raman and Forman provide aninteresting account43 that de Broglie was not taken seriously bythe 
quantum establishment:
“Thus in Copenhagen and in Gottingen, where atomicphysics was pursued in the Copenhagen spirit, de 
Brogliewould certainly have had the reputation of a renegade, if notexactly a crank, who stuck 
obstinately to his own illconceived theories ... Thus among the central Europeanphysicists deeply 
involved in the problems of theoreticalspectroscopy, and this was indeed the great majority of 
thoseseriously concerned with the quantum theory, de Brogliemust have had a very bad reputation.”On 
the other hand, Schrödinger had no such biases against deBroglie and so took his work seriously. There is 
a well-knownanecdote due to Dirac44 that the first wave equation Schrödingerguessed later became 
known as the relativistic Klein-Gordonequation. When this equation, applied to the hydrogen atom, 
didnot yield the familiar results, Schrödinger abandoned thisequation, searched again for a better 
candidate, and discoveredthe famous Schrödinger equation.Felix Bloch, the 1952 Nobel laureate in 
Physics, who was astudent at ETH-Zurich at that time, provides additional details45on the events when 
Schrödinger participated in their physicscolloquium run by Peter Debye (Nobel Prize in 
Chemistry,1936). Bloch recalls Schrödinger’s seminar in early 1925:
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“Once at the end of a colloquium I heard Debye saying something like: ‘Schrödinger, you are not 
working right nowon very important problems anyway. Why don’t you tell ussome time about that thesis 
of de Broglie, which seems tohave attracted some attention.’So, in one of the next colloquia, 
Schrödinger gave a beautifully clear account of how de Broglie associated awave with a particle and how 
he could obtain thequantization rules of Niels Bohr and Sommerfeld bydemanding that an integer 
number of waves should be fittedalong a stationary orbit. When he had finished, Debyecasually 
remarked that he thought that this way of talkingwas rather childish. As a student of Sommerfeld he 
hadlearned that, to deal properly with waves, one had to have awave equation ... Just a few weeks later he 
(Schrödinger)gave another talk in the colloquium which he started bysaying: ‘My colleague Debye 
suggested that one should havea wave equation; well, I have found one!’”Prompted by Debye, 
Schrödinger discovered his equation in about three months, between November 1925 and
January 1926, and published a series of four papers on wavemechanics entitled Quantization as an 
eigenvalue Problem.46−48It is understandable that the members of the “CopenhagenEstablishment” 
did not discover the wave equation, as they did not take de Broglie seriously. But I have often wondered 
why Einstein or Debye did not discover the wave equationthemselves. I believe that while Einstein 
understood theimportance of de Broglie’s matter wave concept, he was toopreoccupied with his search 
for the unified field theory, which heworked on for the rest of his life. As for Debye, it appears that hehad 
some regrets, as narrated again by Bloch:45“Many years later, I reminded Debye of his remark aboutthe 
wave equation; interestingly enough he claimed that hehad forgotten about it, and I am not quite sure 
whether thiswas not the subconscious suppression of his regret that hehad not done it himself. In any 
event, he turned to me with abroad smile and said: ‘Well, wasn’t I right?’” ”
Initially, Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics appeared to be very 
different from each other,and an acrimonious debate ensued over which one was correct.In a footnote to 
a 1926 paper, Schrödinger wrote: “I wasdiscouraged, if not repelled, by what appeared to me 
ratherdifficult method of transcendental algebra, defying any visualization.” Meanwhile, Heisenberg 
complained to Pauli: “Themore I think about the physical part of Schrödinger theory, themore detestable 
I find it.” Fortunately, the debate wasresolved in1926. Schrödinger, along with Carl Eckert, working 
independently, demonstrated that the two new mechanics, althoughsuperficially very different, were 
mathematically equivalent toeach other.Schrödinger was awarded the Nobel Prize in Physics in 
1933,which he shared with Paul Dirac, discussed next, for theircontributions to quantum mechanics.5.3. 
Commutator and the Poisson Brackets: Dirac’sDiscovery (1928−1930). Right before the paper by 
Born,Heisenberg, and Jordan was published in January 1926, anotherpaper outlining the whole 
framework of quantum mechanics waspublished in the Proceedings of the Royal Society by Paul 
Dirac(Figure 10), then a research student of R. H. Fowler’s inCambridge. Reflecting on Heisenberg’s 
paper, Dirac recalled:49
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“During a long walk on a Sunday it occurred to me that the commutator might be the analogue of the 
Poisson bracket,but I did not know very well then what a Poisson bracketwas. I had just read a bit about it 
and forgotten most ofwhat I had read. I wanted to check up on this idea, but Icould not do so because I did 
not have any book at homethat gave Poisson brackets, and all the libraries were closed.So I had just to 
wait impatiently until Monday morningwhen the libraries were open to check on what Poissonbracket 
really was. Then I found that they would fit, but Ihad one impatient night of waiting.”By recognizing the 
link between these two brackets, Diraceffectively clarified the connection between 
Heisenberg’svariables and classical variables, giving the formulation a moreclassical appearance. 
Meanwhile, it neatly highlighted the precisepoint where the reformulation diverged from the 
classicaltheory.Dirac was one of the most brilliant theoretical physicists of thetwentieth century, making 
profound contributions to quantummechanics, quantum field theory, and relativistic 
quantummechanics. His work introduced the Dirac equation, predictedthe existence of antimatter, and 
laid the mathematicalfoundation for quantum electrodynamics (QED). Dirac sharedhis Nobel in 1933 
with Schrödinger.

5.4. Pauli Exclusion Principle (1925). As I wrap up this period of frenetic activity, I would be remiss if I 
did not mentionthe contributions of Wolfgang Pauli (Figure 11), particularly hisexclusion principle. 
Pauli made fundamental contributions toquantum mechanics and quantum field theory, 
significantlyshaping modern physics. His most famous work includes thePauli exclusion principle, his 
contributions to spin theory, thetheory of quantum electrodynamics (QED), and the predictionof the 
neutrino.In 1925, Pauli formulated the exclusion principle, stating that no two identical fermions can 
occupy the same quantum statesimultaneously. Mathematically, this means that for a system oftwo 
electrons, the wave function Ψ must be antisymmetric underparticle exchange: Ψ(1, 2) = − Ψ(2, 1). This 
ensures that if twoelectrons were in the same quantum state, then the wavefunction would be zero, 
prohibiting such configurations.

The Pauli exclusion principle explains: (i) electron shell structure of atoms, (ii) periodic table 
organization and whydifferent elements have distinct chemical properties, and (iii)stability of matter, as 
it prevents electrons from collapsing intothe lowest energy state. For his contributions to the 
development of quantum mechanics, Pauli was awarded the Nobel Prizein Physics in 1945.
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6. ACT IV: THE COPENHAGEN INTERPRETATION (1927−1930)

Starting with Heisenberg’s matrix mechanics in 1925 and concluding with Dirac’s relativistic quantum 
theory in 1930, in ashort span of five years, a coherent mathematical formalism ofquantum mechanics 
emerged. However, its conceptualimplications seriously bothered several leading physicists,including 
those who contributed to its development, such asEinstein, Schrödinger, and others. Objecting to the 
probabilisticfoundations of quantum mechanics, Einstein was perhaps themost vocal, famously 
saying:52 “God does not play dice with theuniverse.” On quantum entanglement,52 he called it 
“spookyaction at a distance.” Schrödinger devised the famousSchrödinger’s cat paradoxto highlight the 
interpretational issuesof quantum mechanics.
Despite such objections, physicists converged around a set of principles advocated by Bohr and 
Heisenberg in 1927, known asthe Copenhagen Interpretation, which has remained the mostwidely 
accepted view of quantum mechanics for a century. Thekey tenets of this view are: (i) Nature at the 
quantum level isintrinsically probabilistic, and the square of the wave function|ψ(x, t)|
2 gives the probability of finding a particle at (x, t). (ii) A quantum system exists in a superposition until 
measured, atwhich point it collapses into a definite state. (iii) The act ofmeasurement affects the system. 
(iv) Key quantities such asenergy, momentum, spin, etc. are quantized.There are some fundamental 
concerns with thisinterpretationof quantum mechanics, particularly with respect to the wavefunction 
collapse, which we shall not go into.53−56 The fact thatthe predictions of quantum mechanics have been 
fantasticallyaccurate, as verified by countless experiments over the decades,although its conceptual 
foundations are somewhat murky,prompted N. David Mermin, the physics professor who taught me 
quantum mechanics at Cornell, to summarize the Copenhagen Interpretation as “Shut up and calculate!” 
Thisquote is often misattributed to Richard Feynman.

7. IMPACT OF QUANTUM MECHANICS IN CHEMICAL ENGINEERING
Although the objective of this paper is not on the application of quantum mechanics, I would like to 
briefly mention its profoundimpact on chemical engineering and materialsscience.58,59 Fromreaction 
kinetics to materials design, quantum mechanicsprovides the fundamental principles that govern 
atomicinteractions, electronic structure, chemical bonding, computational chemistry, catalysis, 
nanotechnology, and quantumcomputing, among other areas. Quantum mechanics providesinsights into 
(i) molecular interactions and reaction mechanisms, (ii) electronic structures governing chemical and 
materialproperties, and (iii) energy levels that define molecular andsolid-state behaviors. Using such 
information, chemicalengineers optimize catalysts, polymers, drug molecules, andnanomaterials, 
improving efficiency and sustainability.For example, the Schrödinger equation is routinely used 
todetermine molecular structures and properties, such as bondlengths and angles, reaction energy 
barriers for kinetic analysis,and molecular orbitals and charge distributions. The DensityFunctional 
Theory is widely used to design catalysts, semiconductors, polymers, and nanomaterials. Quantum dots 
are yetanother application for designing nanoscale semiconductorswith tunable electronic properties 
used in LED displays andphotovoltaics. Quantum confinement is utilized, for example, inthe design of 
graphene-based sensors and supercapacitors forenergy storage. As quantum technology advances, 
chemicalengineering and materials science will continue to leverage itsprinciples for sustainable 
industrial processes, advanced materials, and novel pharmaceuticals, driving innovation in the21st 
century.

8. IS AI AT A “1900-MOMENT”?
From its origins in abstract thought to its applications in materials science and quantum computing, 
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quantum mechanicsis a testament to the power of the human intellect to unlock nature’s most closely 
guarded secrets. Quantum mechanicsrevolutionized physics by fundamentally altering our 
understanding of nature on the atomic scale. As Bohr remarked: “Ifquantum mechanics has not 
profoundly shocked you, youhaven’t understood it yet.”The key conceptual breakthroughs, summarized 
in Table 1,reveal an interesting finding. It appears that even the pioneersmissed the next conceptualstep. 
For example, Planck consideredhis quantum hypothesis merely a “mathematical trick,” not 
afundamental law of nature, and, therefore, missed theconnection with the photoelectric effect. Einstein 
understoodthis connection, but surprisingly, he did not realize its implications for other kinds of matter 
when he applied thehypothesis to photons. It was Bohr who connected it to electrons and their atomic 
orbitals, yet he, too, failed to grasp itsgenerality. de Broglie was the one who perceived the 
universalnature of the wave-particle duality. However, his excessivereliance on electromagnetic wave 
analogies prevented him fromdiscovering the wave equation, a feat accomplished bySchrödinger. 
Again, Schrödinger did not quite understand conceptual significance of the wave function, which Born 
later

interpreted probabilistically. Dirac accomplished the next conceptual step.This analysis teaches us how 
hard conceptual discoveries are.As Heisenberg remarked: “As a rule, new concepts come up in arather 
unclear and undeveloped form.” This sequence of missedopportunities reminds us of how, in the 
technology space, IBMmissed Microsoft (i.e., creating a software giant), Microsoftmissed Apple (i.e., 
Apple products), Apple missed Google missed Facebook, and all of them missed OpenAI. Allwere 
gigantic missed opportunities. I wonder what else liesahead that we are missing now!
The early history of quantum mechanics illustrates how messy the discovery process really is. The 
textbooks and courses oftengloss over this aspect, presenting the final equations as if theywere reached 
clearly, smoothly, and logically. This is rarely thecase. They are often discovered through clever 
guesswork. Eventhe most beautiful Einstein field equations of gravity werediscovered in this manner.60 
I am reminded of a remark by HenriPoincare:61 “Guessing before proving! Need I remind you that itis 
so that all important discoveries have been made?”
Our analysis also reveals that the key challenges were conceptual rather than mathematical. Planck’s 
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revolutionaryquantum hypothesis is mathematically trivial: ϵ = hν. Einstein’sNobel-winning equation is 
so simple that a high school student can understand: hν = W + Ek. Even Heisenberg-Born’s 
matrixformulation or Schrödinger’s equation is not tricky mathematically. Mathematical sophistication 
first emerged through Dirac’srelativistic quantum mechanics and later in quantum fieldtheory. 
Furthermore, the mathematical tools were alreadyavailable and ready to be applied once the conceptual 
difficultieswere resolved. For example, matrices, probability theory, andpartial differential 
equations�the main tools of quantum mechanics�have been around for a long time. Similarly, for the 
theory of relativity. The mathematics of special theory is just elementary high school algebra, but the 
conceptual breakthroughs about space and time were colossal. The general theoryrequired more 
sophisticated mathematics, to be sure, but it wasreadily available, thanks to Riemann.60The only 
instance in the history of physics where themathematical framework was also lacking, along with the 
needfor a conceptual breakthrough, was the discovery of the theory ofgravitation. In addition to the 
conceptual breakthrough ofuniversal gravitation, Newton also had to develop themathematical tool 
needed, namely, the calculus. However, thisis the only exception that I am aware of.This analysis 
suggests another valuable lesson for the presenttime. Like the 1900s clouds, I believe we have a large 
cloud nowon the horizon: the lack of a theory for deep neural networks large language models. By 
theory, I mean fundamental organizing principles that can predict important system-wideproperties, 
such as the structure and behavior of LLMs, fromtoken-level properties.62,63 To be sure, significant 
progress hasbeen made in the last three decades in neural network training,including the development of 
the backpropagation algorithm,various regularization techniques, reinforcement learning, 
andtransformer architecture, among others. However, these aremerely recipes for training; they do not 
provide a comprehensivetheory of deep neural networks or large language models(LLMs). This is the 
central conceptual challenge facing AI today.
In 1972, physics Nobel laureate Philip Anderson published an influential paper entitled “More is 
Different”.64 He observed:“The behavior of large and complex aggregates ofelementary particles, it 
turns out, is not to be understoodin terms of a simple extrapolation of the properties of a fewparticles. 
Instead, at each level of complexity, entirely newproperties appear, and the understanding of the 
newbehaviors requires research that we think is as fundamentalin its nature as any other ... At each stage, 
entirely new laws,concepts, and generalizations are necessary, requiringinspiration and creativity to just 
as great a degree as inthe previous one. Psychology is not applied biology, nor biology applied 
chemistry.”
In this sense, invoking another physics analogy, Newtonianmechanics and F = ma can explain the 
dynamics of a fewparticles. However, when we have Avogadro’s number (6.02 ×1023) of molecules 
dynamically interacting in a gas, the collectivebehavior cannot be explained by applying Newton’s law 
1023times! To be sure, F = ma is going on at the molecular level, butmuch more happens at the system 
level that cannot beunderstood by Newton’s Second Law alone.To explain macroscopic phenomena, we 
need entirely newconcepts, such as temperature, free energy, entropy, andchemical potential, to predict 
and explain the behavior of agas. These concepts are absent at the individual particle level in Newtonian 
mechanics. We require an entirely new conceptual and mathematical framework, known as statistical 
mechanics, toaddress this new physics. It turns out that we need the SecondLaw of Thermodynamics and 
not the Second Law of Newton.This dichotomy between classical and statistical mechanics islike the 
proverbial “seeing trees but not the forest”. The F = maperspective is “seeing the trees,” and S = k ln W is 
“seeing theforest.”Likewise, large language models are not mere stochasticautocomplete engines. They 
have new emergent capabilitiesthatrequire creating a new conceptual framework similar to the 
transformation from Newtonian to statistical mechanics or from classical to quantum mechanics. The 
LLMs may not havedeveloped a human-like understanding of their domain, but they seem to have 
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acquired a different kind of understanding andintelligence. Although it is difficult to say without 
anyuncertainty that AI is at a “1900-moment,” the signs are compelling. For millennia, we have taken for 
granted themeanings of words such as “understanding” and “intelligence”without much introspection. 
With the advent of LLMs, we arecompelled to reevaluate our understanding of such concepts.LLMs 
raise profound philosophical questions about consciousness, free will, and the nature of creativity and 
intelligence,conceptual questions with which we are only beginning tograpple.
So, what would a mathematical theory of LLMs look like? As noted, I believe mathematical tools are 
already available: linearalgebra, probability theory, statistical mechanics, game theory,graph theory, 
group theory, and topology. The challenge lies indiscovering new concepts necessary for this problem. 
Asdiscussed, quantum theory was born from the analysis of theenergy distribution in blackbody 
radiation. Classical physicsbased theories could not explain this distribution, whichcompelled Planck to 
propose a quantum hypothesis. Similarly,in well-trained deep neural networks, the connection weights 
aredistributed lognormally. Neither the Hopfield nor theBoltzmann Machine model, which were 
recognized with the2024 Nobel Prize in Physics, can predict or explain thelognormal outcome. 
Recently, a new conceptual framework,63called statistical teleodynamics, which combines game theory 
andstatistical mechanics, has been proposed to predict this outcomeas a first step toward a mathematical 
theory of LLMs. Borrowingfrom physics, the Hopfield and Boltzmann machine modelsemploy energy 
minimization, where as the new framework useseffective-utility maximization from economics as its 
organizing principle.
The ultimate theory of LLMs can potentially upend our views of cognition and sentience, much like the 
“1900-moment” did inphysics a century ago. Thus, as Planck and Heisenberg remarkedabout how new 
concepts are born amid profound confusion,understanding the historical evolution of the 
quantummechanical concepts could be helpful in a similar situation tothat we face in artificial 
intelligence.
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(3) Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer 
Beziehungen. Zeitschrift für Physik 1925,33, 879−893.
(4) Wigner, E. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. 
Communications in Pure and Applied Mathematics1960, 13, 1.
(5) Heisenberg, W. Development of Concepts in the History of Quantum Theory. American Journal of 
Physics 1975, 43, 389−394.
(6) Shankar, R. Principles of Quantum Mechanics, 2nd ed.; Springer:New York, 1994.
(7) Greene, B. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate 
Theory, 25th ed.; W. W. Norton &Company: New York, 2024.
(8) Rovelli, C. Reality Is Not What It Seems: The Journey to Quantum Gravity; Riverhead Books: New 
York, 2017.
(9) Wilczek, F. A Beautiful Question: Finding Nature’s Deep Design; Penguin Press: New York, 2015.
(10) Carroll, S. Quanta and Fields: The Biggest Ideas in the Universe;Dutton: New York, 2023.
(11) Kelvin, L. W. T. Nineteenth Century Clouds over the Dynamical Theory of Heat and Light. The 
London, Edinburgh, and DublinPhilosophical Magazine and Journal of Science 1901, 2, 1−40.
(12) Gamow, G. 30 Years That Shook Physics: The Story of Theory; Dover Publications: New York, 
1966.
(13) Nauenberg, M. Max Planck and the Birth of the Quantum Hypothesis. American Journal of Physics 
2016, 84, 879−882.
(14) Popkin, R. H. The Philosophy of the 16th and 17th Centuries; Simon and Schuster: New York, 1966.
(15) Blackbody radiation. https://en.wikipedia.org/wiki/Blackbody_radiation, Accessed on 10 April 
2025.
(16) Planck, M. Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik 1901, 
309, 553−563.
(17) Planck, M. Scientific Autobiography and Other Papers; Philosophical Library: New York, 1968; 
Paperback edition, August 1,1968.
(18) Erfurth, H. Max Planck Exhibit. 1938; https://www.dhm.de/ lemo/bestand/objekt/max-planck, 
Accessed on 10 April 2025.
(19) Sharp, K.; Matschinsky, F. Translation of Ludwig Boltzmann’sPaper “On the Relationship between 
the Second FundamentalTheorem of the Mechanical Theory of Heat and Probability Calculations 
Regarding the Conditions for Thermal Equilibrium”.Entropy 2015, 17, 1971−2009. (a) Originally 
published in Originallypublished in Sitzungberichte der Kaiserlichen Akademie derWissenschaften. 
Mathematisch-Naturwissenschaftliche ClasseSitzungberichte der Kaiserlichen Akademie der 
Wissenschaften. MathematischNaturwissenschaftliche Classe; Abt. II, LXXVI 1877, pp 373−435 
(Wien.Ber. 1877, 76, 373−435). Reprinted in , Vol. II, reprint 42, pp 164−223,Barth, Leipzig, 1909.
(20) Hermann, A. The Genesis of Quantum Theory; MIT Press:Cambridge, MA, 1971.
(21) Gearhart, C. A. Planck, the Quantum, and the Historians. Physics Perspectives 2002, 4, 170−215.
( 2 2 )  S t a n f o r d  E n c y c l o p e d i a  o f  P h i l o s o p h y ,  C o n t i n u i t y .  n . d . ;  
https://plato.stanford.edu/entries/continuity/, Accessed: 2025-02-22.
( 2 3 )  C h a v a n ,  L .  A l b e r t  E i n s t e i n  i n  S w i s s  P a t e n t  O f f i c e .  1 9 0 5 ;  h t t p s : / /  

ISSN 1520-5045

Industrial & Engineering Chemistry Research (Volume- 64, Issue - 3, Sept - Dec 2025)                                                                   Page No. 64



ISSN 1520-5045

Industrial & Engineering Chemistry Research (Volume- 64, Issue - 3, Sept - Dec 2025)                                                                   Page No. 65

www.lbi.org/griffinger/record/213882, Accessed on 10 April 2025.
( 2 4 )  N o b e l - F o u n d a t i o n  N i e l s  B o h r  -  B i o g r a p h i c a l .  1 9 2 2 ;  h t t p s : / /  
www.nobelprize.org/prizes/physics/1922/bohr/biographical/, Accessed on 10 April 2025.
(25) Bohr, N. On the Constitution of Atoms and Molecules. Philos.Mag. 1913, 26, 1−25.
(26) Ford, K. W. Niels Bohr’s First 1913 Paper: Still Relevant, Still Exciting, Still Puzzling. The Physics 
Teacher 2018, 56, 500−502.
(27) Darrigol, O. In Erwin Schrödinger - 50 Years After (ESI Lectures in Mathematics and Physics); 
Reiter, W. L., Yngvason, J., Eds.; EuropeanMathematical Society, 2013.
(28) de Broglie, L. Recherches sur la theorie ́ des quanta. Annales de Physique (10e serie) ́ 1925, III, 10, 
Doctoral thesis defended in Paris,November 25, 1924.322128
( 2 9 )  W h o ’s  W h o  i n  t h e  H i s t o r y  o f  Q u a n t u m  M e c h a n i c s .  1 9 2 9 ;  h t t p : / /  
www.physics.umd.edu/courses/Phys420/Spring2002/Parra_Spring2002/HTMPages/whoswho.htm, 
Accessed on 10 April 2025.
(30) Heisenberg, W. Physics and Beyond: Encounters and Conversations; Harper & Row: New York, 
1971.
( 3 1 )  B u n d e s a r c h i v  B i l d 1 8 3 - R 5 7 2 6 2 ,  W e r n e r  H e i s e n b e r g . j p g .  
1933;https://en.wikipedia.org/wiki/File:Bundesarchiv_Bild183-R57262,_Werner_Heisenberg.jpg, 
Accessed on 10 April 2025.
(32) Born, M. Quantentheorie und Störungsrechnung. Naturwissenschaften 1923, 11, 537−542.
( 3 3 )  N o b e l - F o u n d a t i o n  M a x  B o r n  -  B i o g r a p h i c a l .  1 9 5 4 ;  
https://www.nobelprize.org/prizes/physics/1954/born/biographical/, Accessed on10 April 2025.
(34) Fedak, W. A.; Prentis, J. J. The 1925 Born and Jordan Paper ’On Quantum Mechanics. American 
Journal of Physics 2009, 77, 128−139.
(35) Born, M.; Jordan, P. Zur Quantenmechanik. Zeitschrift für Physik 1925, 34, 858−888.
(36) Born, M.; Heisenberg, W.; Jordan, P. Zur Quantenmechanik II.Zeitschrift für Physik 1926, 35, 
557−615.
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