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Simulation and Measurement of Plume Characteristics of a 
Hall Thruster with 12.5 kW  

A B S T R A C T

INTRODUCTION

 Based on the advantages of lower cost and high reliability, Hall thrusters have been widely used in many 

space missions such as satellite orbit adjustment, attitude control, and rotation (Huang et al. 2011; 

Kozubskii et al. 2003; Mazouffre 2016). However, Hall thruster plumes consist of electrons, ions, 

neutrals and sputters, which can lead to surface contamination and surface charging of the spacecraft 

(Goebel et al. 2014; Tajmar et al. 2001). Therefore, with the continuous expansion of in-orbit 

application missions, the influence of the thruster plume on spacecraft operation has received more 

attention. Meanwhile, the interactions between the thruster plume and the spacecraft determine the 

layout of the thruster and other spacecraft carrying equipment, such as the solar arrays, antennas, and so 

on. Additionally, the plume density and distribution also determine the working parameters of the 

thruster, such as plume divergence angle and thrust density. That is, the higher the axial plume density, 

the smaller plume divergence angle, and the higher the thrust density. As shown in Fig. 1, the 12.5 kW 

Hall thruster with a (discharge channel) diameter of 200 mm is developed by the Lanzhou Institute of 

Physics (LIP), and its application is for the future nuclear power propulsion and deep space exploration 

in China. To optimize the working parameters of the 12.5 kW Hall thruster, it is necessary to study the 

To rapidly and cheaply obtain the plume characteristics of a 12.5 kW Hall thruster, a simulation model 

based on the fluid method is developed, and a plume measurement is conducted to verify and compare 

with the simulations. The results show that the discharge process will mainly occur in the upper part of 

the discharge channel, and the error between simulations and measurements of the magnetic field is 

less than 5%. The pressure in the discharge channel is the highest and the average pressure is about 

0.12 Pa. In the plume diffusion region, the plasma density decays slightly along the axial direction and 

rapidly in the radial direction. Additionally, the plasma density and the electron temperature from the 

discharge channel outlet to the upper boundary of the plume region are in the range of 6.2 × 101 6 to 

5.2 × 1017 m-3 and 1.8 to 12.2 eV, respectively. In the plume measurement, a single Faraday probe is 

used to scan and measure the beam current, and the simulations are consistent with the experiments. 

The simulation model basically achieves the purpose of obtaining the plume characteristics with 

certain accuracy, low cost and rapidly. 

Keywords: Hall thruster; Ion beams; Plasma discharges; Plasma diagnostics.
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plume characteristics of the thruster.

 T he study of plume characteristics includes simulation and experimental measurement. There are three 

methods to simulate the plume characteristics: the fluid method, the full particle method, and the hybrid 

simulation. The difference between the three methods is the treatment of particles in the plume, that is, 

the use of fluid equations, particle motion equations, or a combination of the two types of equations to 

deal with the plume particles. Since the 1980s, some researchers have calculated and studied the plume 

of Hall thrusters. Typically, David et al. (1999) built a plume simulation model of a Hall thruster using 

the particle-in-cell direct Monte Carlo collision (PIC-DSMC) method, and the results indicated that the 

plume consists of quasi-neutral plasma and collision-free electrons, hence the effect of the magnetic 

field (MF) on the thruster plume can be ignored. Additionally, the simulation results of beam current 

density were in good agreement with the experimental results. Taccogna et al. (2008) investigated 

collisions between different types of particles in the plume by the full particle simulation method. In the 

simulation, the electron temperature in the plume near-field region was assumed to be constant, and the 

plume as a whole was electrically neutral. Boyd et al. (2002) and Keidar et al. (2005) added a fluid model 

to the full particle model, which was used to solve electron density. The simulations were compared with 

the measurement results, and the results showed that plasma density in the near-field of the plume was 

close to the measurements. Since 2010, studies on plume modeling of Hall thrusters have gradually 

increased, and the models were mainly based on axial and radial modeling, while the solution area 

included the discharge channel and near-field plume region. For example, Andreussi et al. (2017) and 

Kawashima et al. (2018) used a two-dimensional (z and r direction) hybrid model to simulate the Hall 
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thruster discharge channel and plume near-field region, and the solution of potential in the evaluation 

was treated as plasma quasineutral, that is, the effect of self-consistent electric field (ES) was ignored, 

and the experiments showed that it had no great influence on the simulation results of the discharge 

process. Domínguez et al. (2018) and Campanell et al. (2015) established a full-particle radial model of 

the discharge channel by using the PIC-MCC method, and concluded that the non-Maxwell distribution 

of electrons in the discharge channel has some influence on the plasma sheath. Therefore, controlling 

the secondary electron emission coefficient can keep the stability of the sheath. Merino et al. (2015) 

used a full fluid model to quickly predict the spatial distribution of plasma in the plume near-field region 

and found that the fluid method can greatly expand the calculation region, and the boundary conditions 

(including thruster input parameters, plume boundary settings, etc.) have an important impact on the 

simulation results of the thruster plume. Cao et al. (2020), Lu et al. (2018), and other researchers have 

carried out computational simulations on the charge exchange (CEX) ion distribution and etching of 

discharge channels. The measurements of plume characteristics include contact methods and non-

contact method represented by probe measurement (Long et al. 2024) (such as Faraday probe, Langmuir 

probe) and optical measurements (Linnell et al. 2006) (such as laser-induced fluorescence method, 

spectral diagnosis). Measuring the plume current density with probes is the cheapest and easiest to 

achieve, while optical measurement requires expensive instruments and a special transparent glass for 

the vacuum chamber to obtain the plume parameters. As mentioned above, although there have been 

many simulation and measurement studies on the plume characteristics of Hall thrusters, there are few 

studies on the plume characteristics of high-power Hall thrusters, and most of research chooses full-

particle or hybrid simulation models,  require high cost and time to develop models. Moreover, due to 

the urgent on-orbit tasks, the development cycle of thrusters is correspondingly shortened, and the final 

structure of thrusters often needs several iterations of design improvement. Therefore, developing an 

efficient, cheap, and accurate plume simulation model and obtaining the characteristics of the plume 

have obvious engineering value for accelerating the structural improvement of high-power Hall 

thrusters.

T he purpose of this paper is to quickly establish an efficient and cheap plume model using commercial 

software, and the model needs to have a certain level of precision. The plume characteristics are then 

evaluated, and the simulations are verified by experiments. According to the comparison results, the 

accuracy of the model will be verified, and it will be estimated whether the model can be used for rapid 

simulation of plume characteristics. Additionally, theoretical results can be used for the possible 

improvement of existing structures improvement in the future.

 METHODOLOGY

 As shown in Fig. 1, the 12.5 kW Hall thruster adopts a centering cathode design, where the cathode is 
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installed at the center of the thruster’s geometric symmetry. This facilitates the symmetry of the plume 

and results in higher anode efficiency. Considering the advantages of the three plume simulation 

methods and the purpose of rapid iterative thruster structure optimization, the fluid method is adopted to 

obtain the plume characteristics. Therefore, COMSOL Multiphysics coupling software is used for the 

simulation, hence COMSOL is suitable for inexpensive and quick fluid parameter studies, but the 

convergence of calculations needs to be solved (Gabriel 2005).

 T he fluid method is to obtain the relevant parameters of the plume particles by solving the magneto-

fluid equation, with certain assumptions made in the calculation, which mainly include:

 • All three types of particles (electrons, ions, and atoms) in the plume are simulated using fluid 

equations; 

• The calculation area consists of the discharge channel and the plume near-filed region (2 to 3 times the 

diameter of the discharge channel (Andreussi et al. 2017), but considering the comparison with the test, 

the length of calculation area is extended to 1 m;

 • The ES in the plume area is an electrostatic field, and the ES distribution is obtained by the potential 

relationship when the thruster is working steadily. Here, the influence of the plasma self-consistent ES is 

ignored, as the plasma beam in the Hall thruster plume region is electrically neutral due to the relatively 

weak MF;

 • The influence of the cathode on the plume is ignored. This is because, after the discharge is stabilized, 

the number of electrons emitted from the hollow cathode is constant. Therefore, an electron flux 

boundary is set in the fluid model to simulate the electron emission. Additionally, the cathode has no 

effect on the distribution of the MF in the plume diffusion region, and the potential of the cathode is only 

about 11 to 18 V relative to the power ground, which is much lower than the potential difference (600 V) 

between the anode and the power ground;

 • The influence of the plasma sheath on the potential distribution is ignored. This is because, to satisfy 

the quasi-neutrality of the plasma, the mesh size used in the fluid model is much larger than the Debye 

length of the plasma (about 0.2 to 1 mm) in the plume region.

 As shown in Figs. 1 and 2, the 12.5 kW Hall thruster adopts an axisymmetric structure design, with the 

cathode is mounted at the geometric center of the thruster. This is because the built-in cathode can obtain 

a smaller plume divergence angle, and can effectively improve the anode efficiency (Ding et al. 2018; 

Hofer et al. 2008). Figure 2a shows the installation relationship of various components inside the 

thruster, with the magnetic pole being the main supporting component. Other components (such as the 

anode, discharge channel, etc.) are installed on the magnetic pole. In this structural design, the thermal 

conduction path can be divided into axial (along the discharge channel) and radial (along the diffusion 

plate). The axial heat conduction path is mainly “the energy deposition in the discharge channel – 

interior stay and magnetic pole – diffusion plate and thruster base.” The components along this path are 
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mainly metal, and the heat transfer is mainly through contact heat conduction. In contrast, due to the 

gaps between the various components in the radial direction, most of the heat is transferred in the form 

of surface-tosurface radiation, with some heat transferred along the diffusion plate. Therefore, although 

the thruster operates at a power of up to 12.5 kW , the high-temperature components are mainly the 

discharge channel and the interior coil (measured temperature ranges from 300 to 318 °C), while the 

exterior coil and the base have lower temperatures (ranging from 150 to 210 °C).

Figure 2b shows a schematic diagram of the simulation area. The discharge area is axisymmetric and 

includes both the thruster and the plume diffusion area. The thruster model is built according to the real 

structure size, but only the discharge channel, coil, magnetic pole, and base are retained to simulate the 

discharge process. The radius of the upper magnetic pole and the width and depth of the discharge 

channel are 0.16 m, 0.03 m and 0.06 m, respectively. Additionally, the plume diffusion area includes the 

upper and lower boundaries as well as the wall boundary. The upper boundary simulates the moving 

plane of the Faraday probe. According to the actual position of the probe when the plume is measured, 

the distances between the upper and lower boundaries, as well as between the upper boundary and the 

thruster outlet, are set to 1 m to 0.86 m, respectively. The lower boundary simulates the thruster-

mounting platform. According to the distance between the vacuum facility wall and the thruster, the 

distance between the wall boundary and the symmetrical axis is set to be 0.7 m, ensuring that the plume 

can be fully diffused.

 Table 1 shows the rated parameters of the 12.5 kW Hall thruster. The electrical parameters and gas 

supply parameters listed in the table, such as anode voltage and current, and flow rate of the cathode and 

the anode, are determined after several iterations of performance tests in a vacuum environment. The 

thrust is measured by the pressure sensor for several times and obtained by averaging. Other parameters, 

such as specific impulse and efficiency, are obtained through theoretical calculation. Additionally, it is 
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noted that the voltages of the anode, keeper, and base are all the difference relative to the power ground.

Discharge model and boundary settings

 As shown in Fig. 2b, the discharge model retains the main discharge area according to its real size, and 

the discharge channel is integrated with the plume diffusion region, so that the simulation results are 

continuous. According to the discharge process of the thruster, the static ES module, MF module, single-

phase flow (SPF) module, and drift-diffusion (DD) module of COMSOL are used in the simulation. The 

ES, the MF, and the SPF modules are used to obtain the distribution of the ES, MF, as well as the f luid 

velocity, neutral density, and other parameters. These parameters are used as calculation boundaries or 

setting conditions for the DD module.

 The ES distribution directly affects the motion of ions and electrons, thereby changing the plume 

characteristics and significantly affecting the diffusion of the plume. As shown in Fig. 2 and Table 1, the 

potentials of the upper magnetic pole and the base are equal, set to 25 V. The potential of the upper 

boundary, as shown in Fig. 2b, is set to -30 V because the upper boundary simulates the moving plane of 

the probe. That is, the bias voltage applied on the probe is -30 V, with the negative of the bias power is 

grounded to the vacuum facility. Moreover, the potentials of the wall boundary and the lower boundary, 

as shown in Fig. 2b, are set to 0 V to simulate the facility wall. The ES can be calculated by = E −∇ V . 

Additionally, the ES distribution is obtained based on the assumption that the plasma beam is 

electrically neutral, and the self-consistent electric field of the discharged plasma is ignored.

 The MF distribution mainly affects the movement of electrons, which indirectly influences the 

movement of ions and changes the plume distribution. According to previous research, adjusting the MF 

distribution has noticeable effects on the plume divergence angle and ion density in the plume near-field 

region (Yu et al. 2017). As shown in Fig. 2b and Table 1, the coil closer to the symmetrical axis is the 

interior coil, and the turns and current of the interior coil are set to 490 and 5 A, respectively, while those 

of the exterior coil are set to 260 and 3 A, respectively.



In the neutral fluid simulation of the calculation area, the boundaries are first set according to the actual 

size and gas supply rate, and then the boundaries are slightly adjusted according to whether the result is 

convergent. As shown in Fig. 2b and Table 1, for the discharge channel, the interior diameter of the 

xenon inlet is 5 mm. The SPF module is adopted to obtain the velocity and pressure of the neutral gas in 

the calculation area. According to the previous temperature measurement results of the 12.5 kW Hall 

thruster, the temperature of the inner wrapping post and the discharge channel after stable operation is in 

the range of 300318 °C. In many cases, Hall thrusters operate under a low-density neutral gas, so the 

Knudsen number of the neutral gas is much greater than one, while collisions between the neutrals can 

be ignored and the neutrals in the channel are free-molecule (Katz et al. 2011). In the simulation, the 

turbulence is ignored, and the boundaries of all walls in the channel are set to no-slip, meaning that the 

velocity of the fluid on the walls is zero. The xenon inlet is set to a mass flow boundary with a value of 20 

mg·s-1, and the flow direction is from the inlet to the channel. The initial pressure of the calculation 

region is set to 0.005 Pa, and the upper, wall, and lower boundaries shown in Fig. 2b are set as gas outlets 

with a pressure of 0.008 Pa (measured vacuum degree after stable operation).

Based on the DD equation, the DD module is used to simulate the generation and diffusion of the 

charged plasma in the calculation area, which regards the plasma as a fluid flow, and the flow is effected 

by magnetic and ES. The DD module mainly contains the electron continuity equation, the electron DD 

equation, and the energy balance equation. The electron continuity equation is expressed as follows:

where ne is the plasma density, Γe is the electron flux in the channel, and Re is the generation rate of the 

electrons (unit is m-3s-1). The electrons are produced by elastic, excitation, and ionizing collisions, 

respectively, and the reaction rate coefficients corresponding to different collision type are defined as 

k1, k2, and k3. Each collision type has its own reaction coefficient (Miller et al. 2002), and all the 

reaction coefficients have a similar expression, which is expressed as σν , where σ and ν are the collision 

cross section and the total collision frequency (determined by the electron temperature Te), respectively. 

It is noted that elastic collisions are ignored, as there are almost no Maxwellian electrons produced 

during elastic collisions, but only energy transfer occurs in most cases. T herefore, the excitation 

reaction rate r2 and the ionization reaction rate r3 are expressed as k2n0ne and k3n0ne. The production 

of Maxwellian electrons and the total reaction rate Re in discharge channel can be expressed as:
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Air Corridor-Based Optimization of Chinese 
Airspace and Carbon Emission Analysis

A B S T R A C T

INTRODUCTION

Airspace is the space of air above the surface of the Earth that supports the flight of aircraft and is an 

important strategic resource for the country (Han 2023). To ensure the safe and orderly flight of a large 

number of aircraft in the airspace, the civil aviation authorities have authorized “air highways” (Lili 

2019), namely airways (Fig. 1). Airways are structured around a linear path connecting individual 

ground-based navigation facilities, with defined upper and lower limits in terms of both altitude and 

width. These airway networks are categorized into three tiers: the national hub airway network, the 

regional trunk airway network, and the regional feeder airway network. Routes refer to a predetermined 

navigational pathway followed by an aircraft during flight, encompassing both a designated starting 

point and an endpoint. Routes primarily encompass elements such aircraft flight direction, starting 

point, endpoint, and any intermediate stopping points, without a specified width limit. On the other 

hand, air corridors, as described by Yang et al. (2022), are public routes connecting major urban centers 

 This study theoretically delineates China’s current airspace based on airspace management rules, 

primarily by constructing air corridors to optimize the existing structure, with validation through 

aviation carbon emissions analysis. First, seven air corridors were delineated based on route 

clustering analysis, and their significance was further evaluated through carbon emission efficiency 

comparison. The results show that: 1) the seven corridors are mainly located in central and eastern 

China, forming a “diamondshaped three-dimensional structure”; 2) there are significant differences 

in operational scale among the corridors, with the HarbinHaikou route being the most active and the 

Chongqing-Zhuhai route the least; 3) the total carbon emissions from the seven corridors amount to 

619,431 tons, with carbon emissions and efficiency positively correlated with aircraft type, cruising 

time, and operational scale; 4) the flight density within established corridors is higher than before 

their formation, and they accommodate more flights. This study provides a broad coverage, 

highlighting the structural characteristics of China’s airspace. 

Keywords: Air corridor designation; Route clustering; Aviation carbon emissions; Efficiency.
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(Lili 2012) where common flight paths converge. These corridors are characterized by being 

unidirectional, non-intersecting, high-speed aerial pathways, with specific restrictions and priorities 

designed for efficient long-range travel (Ye et al. 2019). With characteristics including high traffic 

volume, efficiency, and density (Yaqing et al. 2018), air corridors represent a revolutionary 

breakthrough in traditional air traffic management practices. Furthermore, they embody a new 

technological development known as dynamic  airspace configuration (DAC) (Ye et al. 2014). The 

concept of air corridors has gained significant attention as a new approach to airspace resource 

utilization (Lili 2012; Xue 2009). These corridors are also referred to as highways-in-the-sky, dynamic 

multitrack airways (DMA), flow corridors or ribbons, and super sectors (Hoffman and Prete 2008), and 

are designed to group air routes with similar trajectories within a corridor constrained by distance, 

reserving sufficient airspace for high-density routes (Sridhar et al. 2006). The establishment of air 

corridors involves determining both the location of the corridor and the participants in the routes. When 

determining the corridor location, Alipio et al. (2003), Hoffman and Prete (2008), and Yousefi and 

Zadeh (2013) proposed models based on priority sorting and hierarchical setting, velocity vector fields, 

and velocity vector clustering, as well as f light delay and cancellation evaluation. Through the 

identification of candidate airspaces for the corridor and the simulation of the its effectiveness, they 

developed a relatively complete approach for determining corridor locations based on high-load values 

and high flight volumes along major air routes. In determining the participants in the air routes, Xue 

(2009) proposed a method for incorporating more routes with fewer additional flight distances, based on 

the characteristic that many flights have similar flight trajectories. This method is constrained by three 

conditions: great circle distance, vertical distance at flight entry and exit, and an additional 5% flight 

distance. Thus, by determining air corridor locations based on high-traffic routes and including relevant 

flight participants through distance constraints, the establishment of an air corridor can be effectively 

completed (Yaqing et al. 2018).

.
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As the demand for air transportation continues to grow, the problem of insufficient supply capacity in 

the airspace system has become more noticeable, it is shown in four main aspects: 1) Regional 

disparities: an imbalance exists in regional development within China’s airspace system. Eastern China 

boasts a dense network of routes, with approximately 90% of the nation’s flight traffic concentrated east 

of the Beijing-Guangzhou air route. In contrast, the airspace in Western and Central China is relatively 

sparse. However, regional hubs such as Xi’an, Lanzhou, and Urumqi are quite tight on airspace 

resources (Chen 2022); 2) The expansion rate of airspace infrastructure lags behind the growth rate of 

the civil aviation industry (Ligang 2015). From 2000 to 2019, China’s total civil aviation transportation 

turnover experienced a significant average annual growth rate of 12.51%. However, despite this growth, 

the average annual increase in total domestic route mileage, based on unduplicated distance, stands at 

only 9.65% (Han 2023). While there has been an increasing  transfer of military airspace to civilian use 

in recent years, it remains insufficient to meet the growing demand; 3) Inadequate route design, with 

multiple routes converging at one point, making route intersections excessively busy (Yang 2023). 

There are also problems of uneven distribution of trunk and branch routes, poor straightness of flight 

paths (increasing the path of aircraft), and cut-off roads. It makes the existing air transportation network 

unable to match the traffic demand, which also creates congestion, and safety issues (Wang et al. 2021); 

4) The overall efficiency of airspace utilization requires enhancement. While there have been strides in 

fine-tuning airspace management (Chen 2011), challenges persist, including disparities in the spatial 

and temporal distribution of airspace traffic (Han et al. 2019), as well as shortcomings in dynamic 

airspace allocation (Yaqing et al. 2022).

Studies aimed at optimizing airspace utilization through air corridor analysis primarily concentrate on 

three key dimensions. Firstly, efforts focus on the identification and delineation of air corridors. The 

demarcation of these corridors serves multiple purposes, including the evaluation of safe flight zones 

within the corridor, potential collision trajectory assessment, identification of congested segments, and 

facilitation of space-time utilization analysis along with its associated benefits (Yousefi and Zadeh 

2013). Specifically, the process of pinpointing and outlining continuous high-traffic air corridors 

necessitates consideration of nine crucial aspects: entrance and exit points, geometrical configuration, 

all-encompassing locations, accountable entities, utilization prerequisites, operational regulations 

within the corridor, accessibility parameters, restrictions, and the establishment of a comprehensive 

pipeline network (Hoffman and Prete 2008). Notably, the dynamic corridors intrinsic to the two major 

long-distance air highways traversing primary traffic conduits in Europe predominantly reside within a 

150-nautical-mile radius of the busiest airports. Consequently, the application of the Hough transform 

methodology to discern clusters or groups of routes exhibiting congruent trajectories aids in the 

construction of an airborne “pipeline network.” Such a network, characterized by its ability to 

accommodate heightened traffic volumes compared to linear air corridors, enhances airspace utilization 
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efficiency, thereby augmenting its inherent value. Secondly, the optimization problem of air corridors, 

with the overarching objective of mitigating airspace flight complexity (Tian et al. 2019). Air corridor 

optimization endeavors encompass airspace reconfiguration strategies, notably through the dynamic 

deployment of air corridors to establish a network of temporally variable flow corridors. Such adaptive 

configurations confer advantages in terms of average delay, average occupancy, and activation time (Ye 

et al. 2022). This approach not only facilitates the augmentation of airspace capacity but also engenders 

reductions in airborne delays, thereby fostering enhanced self-separation control capabilities for 

aircraft. Notably, a significant portion of US scheduled flights, approximately 33%, are concentrated 

within a mere 10% of origindestination (O-D) pairs (Ye et al. 2014). Therefore, the deployment of 

mobility corridors based on the frequency of daily operations between city pairs offers great potential 

for improving airspace utilization efficiency. However, it is imperative to acknowledge that certain flow 

corridors cater to only a fraction, approximately 4.05%, of the total traffic demand, indicative of a 

pronounced coverage deficiency. Through the optimization of air corridors, the amalgamation of actual 

flight trajectories yields discernible benefits, culminating in a noteworthy 20% reduction in aircraft fuel 

consumption and an average 4% reduction in aircraft flight time without extending the overall flight 

duration (Takeichi and Abumi 2016). Thirdly, identifying and assessing potential aircraft collision risks 

os essential (Zhang and Sherry 2015). The nexus between collision risk and airspace capacity 

necessitates delineation to mitigate f light conflicts within air corridors, consequently enhancing 

operational throughput and stability. For instance, the implementation of self-separation algorithms 

integrating route adjustments and speed modifications (Nakamura et al. 2014) within strip airspaces 

characterized by constrained widths enables conflict-free aircraft operations within narrow air 

corridors.

The study of airspace optimization and carbon emission analysis has become a central focus in air traffic 

management and sustainability research. To ensure both safety and efficiency in air operations, several 

approaches have been proposed to enhance airspace utilization. Babinski et al. (2024) investigated air 

traffic safety management in Brazilian airspace using a matrix-based approach to assess perceived 

safety levels. This study highlights the importance of structuring airspace in a way that optimizes both 

safety and operational efficiency, which aligns directly with the goals of this work to optimize Chinese 

airspace. Additionally, Xiang et al. (2023) analyzed airspace capacity improvements and optimization, 

providing an important foundation for incorporating carbon emission reduction strategies into 

optimized air corridors. Their work emphasizes the relevance of efficient airspace management to 

minimize environmental impacts, a theme that is central to this study. To regulate air traffic flow by 

optimizing airspace structure to match the flow with the capacity of the airspace, the establishment of air 

corridors is an effective way to form a regular and systematic airspace network structure. In addition, 

since the allocation of airspace resources has a direct impact on  the operational efficiency of air traffic 
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flows, it also has a direct impact on aviation carbon emission results. Therefore, this study attempts to 

study to analyze total aviation carbon emissions and the efficiency of the corridors based on 

improvements to the existing methodology for delineating air corridors in China’s airspace. First of all, 

based on the researched route data, clustering and extraction of routes are carried out to identify air 

corridors and their route participants. Then, the high-traffic air corridors are determined to analyze the 

structure of China’s existing route network and designate air corridors. Second, the aviation carbon 

emissions of each corridor are measured and characterized based on indicators such as the number of 

flights, aircraft type, and aircraft cruise time of each route participant within the delineated air corridors. 

Finally, the carbon emission efficiency of the seven air corridors is compared and analyzed to justify the 

existence of air corridors. This study attempts to explore airspace optimization from the perspective of 

air corridor delineation and to verify the results of delineation for carbon emission reduction. 

Furthermore, breaking through the limitations of the previous airport-centered aviation point carbon 

emission research, and actively expand the research perspective on aviation carbon emission. This will 

provide a theoretical reference for the balanced and rapid development of the national civil aviation 

industry, enrich the theoretical content of aviation carbon emission research, and assist in promotion of 

China’s 14th Five-Year Plan for green aviation development.

As global climate change becomes an increasingly urgent issue, reducing greenhouse gas emissions has 

become a critical challenge that governments and businesses worldwide must address. The aviation 

industry, as one of the significant sources of global carbon emissions, faces tremendous pressure to 

mitigate its impact. Under the United Nations Framework Convention on Climate Change (UNFCCC), 

the aviation sector’s emission reduction targets have been incorporated into global climate action 

agendas, with a particular emphasis on reducing aviation carbon emissions in Sustainable Development 

Goal 13. At the same time, the aviation industry is also an energy-intensive sector, where fuel 

consumption not only affects operational costs but also has a profound impact on global energy 

structures and sustainable development. Therefore, optimizing airspace management and designing 

aviation corridors to improve flight fuel efficiency has become a crucial method for enhancing the 

aviation industry’s energy efficiency and advancing Sustainable Development Goal 7. This research 

focuses on optimizing China’s airspace, aiming to explore how to reduce redundant flight routes, lower 

fuel consumption during flights, and subsequently decrease carbon emissions in the aviation sector 

through an air corridor-based aviation optimization model. As one of the largest aviation markets in the 

world, China accounts for a significant portion of global aviation-related carbon emissions. Therefore, 

by optimizing China’s airspace layout and improving flight fuel efficiency and air corridor fluidity, this 

study can not only reduce operational costs for airlines in the short term but also make a positive 

contribution to reducing energy consumption and greenhouse gas emissions both in China and globally. 

This research not only provides scientific support for Sustainable Development Goal 13 but also offers 
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practical pathways to achieve Sustainable Development Goal 7 by promoting energy-efficient practices 

in the aviation industry.

METHODOLOGY

 Data sources

 The route data used in this paper is mainly based on the research obtained from the FlightAware Big 

Data platform (https:// map.variflight.com) and the FlightAware website (https://zh.flightware.com). 

Specifically, route data (excluding Hong Kong, Macao, and Taiwan flights, cargo flights, and 

international flights) for all airports in China were collected over 4 weeks from January 1st to 28, 2023, 

taking into account the cyclical characteristics of flight schedules of air carriers. The data includes fields 

such as the number of flights, aircraft type, operating carrier, connecting city, departure time, arrival 

time, etc. During data processing, shared f lights were deleted, and direct flight routes were combined 

with stopover routes, such as decomposing the Dalian-Tianjin-Xining routes into two routes, Dalian-

Tianjin and Tianjin-Xining. This was collated to get 5,224 one-way routes with 277,069 flights. For 

geographic location identification, the coordinate data (latitude and longitude) of all routes involving 

airports are picked up and entered into the ArcGIS10.4 software with the help of the Baidu map pickup 

coordinate system as a tool. Furthermore, with the help of ArcGIS 10.4 software, the latitude and 

longitude coordinate data of the vertical position of the aircraft entering and exiting the air corridor from 

each airfield point was identified for the distance calculations. When measuring the carbon emission 

efficiency of aircraft in air corridors, the input-output indicators were selected according to the 

principles of comprehensiveness, comparability, indirectness, and accessibility, and the carbon 

emission efficiency was evaluated in the landing and take-off (LTO) and climb, cruise, and descent 

(CCD) phases, respectively. The input indicators included the number of air corridor route participants, 

the average flight distance of route participants (km), and the average cruise time of aircraft (s); the 

desired output indicators included the number of air corridor flights (sorties), while the undesired output 

indicators included the total amount of carbon emissions from the air corridor (t).

Research methodology

 K-means clustering method

 This study introduces the K-means clustering method for route clustering analysis. Each route is treated 

as a data sample. Utilizing the K-means clustering algorithm, all routes are grouped into K different 

route clusters (ROC) based on similar route directions and smaller Euclidean distances between routes. 

This aids in identifying route features and their relationships. Referring to previous research on the 
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structure of domestic scholars’ route networks (Ligang 2015; Yaqing et al. 2018), the value of K was 

determined to be 16 based on the rule of thumb. The K-means clustering method was employed to assign 

original route samples to K group classes based on the similarity of Euclidean distances between them. 

This ensured that each sample was closest to the center of its respective group class, resulting in the 

formation of K groups of ROC. Each group of ROC possesses an ROC centerline.

Air corridor establishment method

 The width of air corridors is typically designed to be 7 km (Zhang and Sherry 2015). Currently, two 

main delineation steps have been proposed by relevant scholars: 1) covering flights with 99.99% of their 

flight time within 133 km of the corridor centerline and 2) identifying the two-dimensional location of 

the corridor by combining the Hough transform with a genetic algorithm. Routes with an additional 

flight distance ratio of ≤ 5% are identified as route participants in the air corridor (Xue 2009). enhances 

the air corridor delineation method from existing literature (Yaqing et al. 2018), taking into account the 

characteristics of the research subjects. To encompass more route participants, routes with a distance-to-

extra-flight ratio (dextra) ≤ 10% are considered as route participants in the corridor.

 Initially, ROC centerlines of longer than 600 km were extracted using the K-means clustering method to 

determine the air corridor locations. Then, the additional flight distance for each route was calculated 

based on great-circle flight trajectory distances for aircraft entering and exiting the air corridor 

vertically at an airport point, aircraft flying in the air corridor, and routes before the delineation of the air 

corridor. Routes with dextra ≤ 10% were included in the air corridor. The air corridor was named 

according to the most frequented routes within the ROC. It extended from the centerline of the initially 

selected ROC to the last airport with routes joining the air corridor, following a great circle trajectory to 

complete the air corridor establishment. Then, the additional flight distance for each route (dextra):

where dextra represents the extra flight distance ratio, d1 and d2 represent the great-circle flight 

trajectory distances for flights entering and exiting the air corridor vertically, respectively, d represents 

the great-circle flight trajectory distance on the air corridor, and D represents the great-circle flight 

trajectory distance before the air corridor is delineated. Taking D as an example, the calculation formula 

is as follows:

where R is the radius of the earth (6,371 km) latA, longA and latB, and longB are the latitude and 

longitude for points A and B, respectively (Fig. 2), the latitudinal and longitudinal coordinates of the 

vertical positions of entering and exiting the air corridor, respectively, and d1, d2, and d are computed in 

the same way as D.



 

 Aircraft carbon emissions measurement method for different flight phases

 The International Civil Aviation Organization (ICAO) divides the entire flight process of an aircraft into 

the LTO and CCD phases. Previous studies have found that aviation fuel consumption and CO2 

emissions primarily occur below 1 km and between 8-12 km (Jun 2022). This paper calculates carbon 

emissions during the LTO and CCD phases of flights based on the ICAO standard emission calculation 

model and the carbon emission accounting model for the CCD phase. 

• LTO phase carbon emissions calculation methodology 

Carbon emissions from aircraft flying through air corridors are measured based on aircraft engine type 

data using a “bottom-up” methodology based on operational data established by ICAO. The ICAO has 

calibrated the duration of operation for each phase of the aircraft LTO phase as follows: take-off (0.7 

min), climb (2.2 min), approach (4 min), and taxi (26 min) (Lu et al. 2018), with the following equations:

 where i is the aircraft type, j is the four different phases of LTO operation, Fi is the fuel consumption (kg) 

of a category I aircraft during LTO, Rij is the fuel consumption rate (kg·s) of a engine of aircraft of 

category i in phase j, Ni is the number of engines of aircraft of category I, Tij is the operating time of 

aircraft of category i in phase j (s), ELTO is the carbon emission of aircraft in LTO phase (kg), I is the fuel 

carbon emission coefficient, which is a constant of 3.15 (kg/kg) (Liu et al. 2019), and ni is the LTO of 

aircraft of category i cycle total number (min). • CCD phase carbon emission calculation methodology T 

he aircraft’s engine settings vary at each phase of flight. The ICAO Engine Emissions Database 

Attachment 16 provides specific thrust parameters, with engine thrust values of 100, 85, 65, 30, and 7% 
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for take-off, climb, cruise, approach, and taxi phases, respectively. By fitting a binomial equation to the 

thrust-specific fuel consumption data and performing interpolation, the fuel flow rate for aircraft 

engines at 65% thrust during each LTO phase can be derived. This enables the calculation of carbon 

emissions during the CCD phase of an aircraft.

 The formula is as follows:

 where, TCCD, TTOTAL, and TLTO are the operating time (s) of the CCD phase, full flight process, and 

LTO phase of an aircraft, respectively, ECCD is the carbon emission (kg) of CCD phase of an aircraft, N 

is the number of engines of an aircraft, FCCD is the fuel flow rate of an engine of an aircraft in the CCD 

phase (kg·s), and I is the fuel carbon emission coefficient, which is a constant 3.15 (kg/kg) (Liu et al. 

2019). Aviation CO2 emission factors Aviation CO2 emission factors represent the CO2 emissions per 

unit flight kilometer of an aircraft type (Lyu et al. 2022) and serve as an important criterion for 

determining carbon emissions. The formula is as follows:

 where Xi is the aviation CO2 emission factor (kg·km), Ei/LTO and Ei/CCD are the carbon emissions in 

the LTO and CCD phases of aircraft of category i, respectively, and L is the flight mileage of the aircraft 

(km).

 SBM model of super-efficiency based on undesired outputs

 In traditional efficiency evaluation models, usually only desired outputs are considered, such as 

corporate profits or product quantities. However, in the actual production process, there will also be 

undesired outputs, such as pollutant emissions, energy waste, etc. The super-efficiency slacks-based 

measure (SBM) model based on undesired outputs is designed to evaluate the efficiency of decision-

making units (DMUs) more comprehensively and accurately, especially in the presence of undesired 

outputs. It is an efficiency evaluation model based on slack variables, which is non-radial and non-

angular. It measures efficiency by taking into account the slack variables for inputs, desired outputs, and 

undesired outputs. Compared with the traditional data envelopment analysis (DEA) model, the SBM 

model can handle the non-proportional changes in inputs and outputs as well as the problem of 

undesired outputs more effectively.

 Specifically, in the super-efficiency SBM model based on undesired outputs, the concept of input is as 

follows: input refers to the resources required in the production or service process, and these resources 

usually have an impact on outputs – the input indicators used in this paper are the number of air routes in 
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the corridor, the flight volume, and the average distance of route participants; desired output: this is the 

output that is expected to be increased as much as possible in the model, representing positive results – 

the desired output indicator used in this paper is the average cruising time of the air routes in the corridor. 

undesired output: this is the result that is not desired or is hoped to be minimized as much as possible in 

the production process, usually an environmental burden, such as carbon emissions, exhaust gas, etc. – 

the undesired output indicator used in this paper is the carbon emissions of the corridor. T he non-radial 

slacks-based variable super-efficiency SBM model is selected to measure the efficiency of aircraft 

carbon emissions in air corridors. It incorporates slack variables in the objective function, which 

effectively solves the problem of slackness of input and output variables when air corridor aviation 

carbon emissions are used as an undesired output indicator for efficiency evaluation (Tone 2001).

RESULTS

 Results of air corridor establishment

 Route cluster aggregate results

 China’s route network exhibits a diamond-shaped three-dimensional structure. Utilizing the K-means 

algorithm, 16 groups of ROC were identified, numbered from 0 to 15 (Figs. 3 and 4 and Table 1). Air 

corridors were delineated and located based on the centerlines of these 16 ROC groups. As the centerline 

length of ROC 1 and 4 is shorter than 600 km, they were not considered for reference. Upon examining 

the distribution characteristics of the remaining 14 ROC groups and their centerlines, a noteworthy 

observation emerged: the centerlines of ROC roughly coincide with the location of other ROC. 

Consequently, the centerlines of overlapping ROC merged to form a diamond-shaped structure (Fig. 5).
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 Table 2 shows the centerlines of the five groups of ROC that form the diamond-shaped structure and 

their connecting areas.

 The four vertices of the diamond are situated in Beijing-Tianjin-Hebei, the Yangtze River Delta, the 

Guangdong-Hong Kong-Macau Greater Bay Area, and Chengdu-Chongqing. This indicates that 

airports within and between these four major urban areas in China experience more intense air traffic 

and serve as key clusters and connecting corridors within the domestic aviation network. The results are 

consistent with studies that have been done (Yang et al. 2022). China’s route network covers about half 

of the country’s cities in terms of routes distribution. The framework of a broad spatial connectivity 

network was essentially established on a national scale, and the main lines of the network consist 

primarily of long-distance lines connecting different regional economic hubs. Table 3 shows the 

coordinates and connection locations of the centerline vertices of the remaining two sets of ROC. The 

two ROC effectively connect the above rhomboid structure to northwest and northeast China, forming a 
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trans-regional air trunk community. This will promote the balanced development of the aviation 

network layout in China. Additionally, the project will significantly enhance inter-regional economic 

and trade exchanges, supporting the advancement of national strategies such as the Belt and Road 

Initiative and the revitalization of the northeastern region of the country.

 Results of air corridor establishment

 Seven air corridors have been delineated within China’s airspace based on the research route data, 

primarily located in the area to the east of the Hu Line (Fig. 6). The longest distance centerline was 

selected from the centerlines of the two overlapping ROC and the short line routes in the corridor were 

merged with the long line routes. Finally, seven ROC mid-lines, ROC0, ROC5, ROC7, ROC10, 

ROC12, ROC13, and ROC15, were identified as the basis for air corridor delineation and the 

approximate locations of the seven air corridors were determined. Afterward, extending the initial ROC 

centerline positions along great circle trajectories towards both ends until reaching the last airport with a 

route incorporated into the air corridor constitutes the establishment of the air corridor. It shall be named 

after the route within the ROC with the highest traffic volume. T he seven designated air corridors 

include the Harbin-Changsha, Harbin-Haikou, and Beijing-Chongqing corridors in the Northeast-

Southwest, the Chongqing-Zhuhai, Urumqi-Hangzhou, and Beijing-Fuzhou corridors in the 

Northwest-Southeast, and the Shanghai-Chongqing corridor in the East-West. The Harbin-Changsha 

corridor is the highest frequency corridor among the seven corridors, averaging 131 flights per routes 

(Table 4), and Chongqing-Zhuhai is the lowest frequency corridor, averaging 39 flights per routes. The 

Urumqi-Hangzhou corridor is the longest average flying distance of the seven corridors, and the 

Chongqing-Zhuhai corridor is the shortest average flying distance.



 

Air corridor structure and element characterization

 The seven designated air corridors exhibit a “diamond-shaped three-dimensional structure,” with the 

Beijing-Tianjin-Hebei Airport Cluster, Yangtze River Delta Airport Cluster, Guangdong-Hong Kong-

Macao Greater Bay Area Airport Cluster, and Chengdu-Chongqing Airport Cluster forming the apex. 

Among them, the edges that form the diamond-shaped structure are Beijing-Fuzhou, Beijing-

Chongqing, Chongqing-Zhuhai, and Harbin-Haikou, with Shanghai-Chongqing serving as its central 

line. The five corridors are all located east and south of the Hu Line, encompassing 158 routes and 

12,706 flights, which account for 80.6% of the total routes and 78.5% of the total flights among the 

seven corridors. This indicates that China’s aviation network layout is closely tied to population and 

urban distribution, reflecting the national air traffic control capability of core airport clusters (Wang and 

Fengjun 2019). However, in terms of airport coverage, the Western region boasts the highest number of 
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airports, followed by the Eastern, Central, and Northeastern regions of China. This can largely be 

attributed to the remarkable growth in airport numbers in the West from 2000 to 2019. According to 

Shuyan et al. (2023), the number of airports in these regions experienced growth rates of 118.2, 19.6, 50, 

and 107.7%, respectively. Specifically, the pace of airport construction in the West accelerated 

significantly after 2005, resulting in more than 50% of the country’s airports being located in this region 

by 2019. T his surge in airport infrastructure not only enhances connectivity within the Western region 

but also strengthens ties between the West and other regions, thereby further promoting the 

development of the regional aviation industry. Urumqi Diwopu Airport, playing a central role in the 

Western region, hosts a multitude of linear airports offering a diverse array of air services. T he region 

has fostered a dispersed aviation layout radiating outward from a single core, thereby facilitating the 

establishment of the Urumqi-Hangzhou air corridor.

 The seven corridors exhibit variations in the number of airports they encompass (Table 2). The Beijing-

Fuzhou corridor connects 14 airports spanning North and East China. The Chongqing-Zhuhai corridor 

links 15 airports across the Southwest, Northwest, Central-South, and East China regions. The Urumqi-

Hangzhou corridor links 12 airports in Xinjiang, the Northwest, South-Central, and East China regions. 

The Harbin-Changsha corridor connects 20 airports in the Northeast, East China, and South-Central 

regions. The Beijing-Chongqing corridor interconnects 28 airports across the Northeast, North, 

Northwest, and Southwest regions. The Shanghai-Chongqing corridor serves 23 airports in the 

Southwest, Central

South, and East China. Finally, the Harbin-Haikou corridor interlinks 35 airports in the Northeast, 

North, East, and South Central regions. Notably, the Harbin-Haikou corridor boasts the highest number 

of airports and flights among the corridors, traversing much of Eastern China.

 The seven air corridors exhibit significant disparities in the number of participating routes. Specifically, 

the Harbin-Haikou corridor boasts the highest number of participating routes, with 65 routes (Tables 3 

and 4), and the largest total flight volume, totaling 6,041 flights. Within this corridor, there are 12 routes 

with flight volumes exceeding 100 flights (bi-directional), HRB-HAK, CAN-SHE, CAN-YNT, CAN-

TAO, HAK-NNG, SYX-SHE, SYX-NNG, SZX-SHE, SZX-TAO, SHE-ZUH, CGQZUH, and CGQ-

SYX. Among these, the Harbin-Haikou corridor stands out as the corridor with the widest latitude span 

within Chinese airspace. Its participants primarily operate medium-haul routes, with an average 

distance of 1,828 km. Long-haul routes are favored by routes due to their higher profitability (Shuyan et 

al. 2023), and air travel is increasingly preferred by passengers due to its high efficiency and minimal 

susceptibility to ground conditions. With the growing prevalence of the “migratory bird” retirement 

model and the exacerbation of aging populations in Northeast China, the proportion of individuals aged 

60 and above in the three Northeastern provinces exceeded 20% in 2021 (National Bureau of Statistics 

of China 2021). Consequently, more elderly individuals are opting for retirement destinations with 
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superior climates and environments, such as Sanya and Haikou in Hainan, Guilin and Nanning in 

Guangxi, and Zhuhai and Shenzhen in Guangdong (IIR-SJTU 2022). Additionally, the organization of 

regional tourism events influences aviation transport layouts (Wang and Jingjuan 2016). For instance, in 

January 2023, the Harbin International Ice and Snow Festival attracted 23,394 million visitors, resulting 

in an 18.2% increase in total flight operations and a 49.4% increase in completed passenger throughput 

at Harbin Taiping International Airport compared to the previous year (Shuyan et al. 2023).

The Chongqing-Zhuhai corridor has the fewest participating routes and the lowest flight volume. 

Among these, only the Chongqing-Zhuhai route has a flight volume exceeding 100 flights (bi-

directional), while the flight volumes of other routes are all less than 50 flights. This is primarily due to 

the corridor’s participants operating short-haul routes, with an average length of 963 km, such as BHY-

CAN (485 km), SWA-HAK (857 km), MXZ-ZHA (763 km), KOW-NNG (941 km), NNG-HSC (679 

km), etc. The expansion of the high-speed rail network has exerted pressure on the aviation network, 

with high-speed rail gradually becoming the dominant mode of transportation within a 1,500 km range 

(Yang et al. 2022). Consequently, passengers have a greater number of cost-effective alternative 

transportation options such as high-speed rail, trains, and buses, leading to a lower frequency of air 

transportation for short-distance journeys.

 After the establishment, the flight density of individual routes within the corridors increased, 

accommodating more flights than before the establishment. The average flight density of single routes 

within the Harbin-Haikou corridor increased by 1.44% after the establishment, with an average increase 

of 17 flights per route. Similarly, the Harbin-Changsha corridor saw increases of 3.40% and 80 flights 

respectively. The Beijing-Chongqing corridor witnessed increases of 2.41% and 30 flights respectively. 

The Shanghai-Chongqing corridor saw an increase of 2.90%. The Beijing-Fuzhou corridor saw 

increases of 8.22% and 17 flights respectively. The Urumqi-Hangzhou corridor saw increases of 9.55% 

and 15 flights respectively. The Chongqing-Zhuhai corridor saw the highest increase in flight density 

after the establishment, with a growth rate of 10.95%. Among these, the Chongqing-Zhuhai corridor 

experienced the highest growth rate in flight density of individual routes after the establishment, while 

the Harbin-Changsha corridor witnessed the largest increase in the average number of flights per route. 

This is mainly attributed to the relatively low number of participating routes and higher flight volumes 

within these corridors, resulting in increased flight density and growth rates of both percentage and 

absolute numbers after the establishment.

 Results of carbon emission measurement for air corridors

 Air corridor carbon emissions analysis

 During the study period, aviation carbon emissions in the seven air corridors totaled 619,431 metric 

tons. The Harbin-Haikou corridor recorded the highest emissions, while the Chongqing-Zhuhai 
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corridor reported the lowest, with a 17-fold difference  between the two (Table 5). Strong correlations 

exist between emissions and the number of route participants, flights, and types of aircraft in each 

corridor. The average carbon emissions across the seven air corridors were 88,490 tons. The Harbin-

Haikou, Harbin-Changsha, and Beijing-Chongqing corridors exceeded the average carbon emissions 

by 138, 77, and 13%, respectively. Conversely, the Chongqing-Zhuhai, Urumqi-Hangzhou, Beijing-

Fuzhou, and Shanghai-Chongqing corridors fell below 86, 72, 67, and 1% of the corridor’s average 

carbon emissions, respectively

The Harbin-Haikou corridor exhibits the highest aviation carbon emissions. This is primarily attributed 

to its highest number of route participants and flights. Additionally, the average distance of routes 

operated by participants in this corridor is 1,828 km, ranking third among the seven corridors. During 

the CCD phase, the average aircraft’s cruise time is 7,451 s, resulting in an average carbon emission rate 

of 26 tons per second. Furthermore, 59% of the routes in this corridor utilize medium-sized aircraft 

suitable for medium to long-haul flights (Table 6), such as the Airbus A320 series (including Airbus 

A318, Airbus A319, and Airbus A320) and the Boeing 737 series (including Boeing 737-700, Boeing 

737-800, and Boeing 737900), with 4,228 and 1,929 flights respectively. The average CO2 emission 

factor for medium-sized aircraft operating within their route intervals during the study period reached 

27.1 kg CO2·km. Some medium-haul routes exceeding 2,000 km in length utilize large-sized aircraft 

such as the Airbus A330 series (including Airbus A330-200 and Airbus A330-300) used for 98 flights, 

and the Boeing 787 series (including Boeing 787-8 Dreamliner and Boeing 787-9 Dreamliner) utilized 

for 24 flights. During the study period, large-sized aircraft exhibited an average CO2 emission factor of 

32.7 kg CO2·km within their route intervals. Large-sized aircraft, due to their longer range, heavier 

weight, and higher passenger capacity, have relatively higher engine fuel consumption rates, resulting 

in significantly higher CO2 emission factors compared to medium and small-sized aircraft. The Airbus 

series and Boeing series of large-sized aircraft recorded average CO2 emission factors of 41 kg Co2·km 

and 34 kg CO2·km within their route intervals, respectively, representing 1.28 and 1.42 times the CO2 

emission factors of medium-sized aircraft within the same series. The aviation carbon emissions in the 

Chongqing-Zhuhai corridor totaled only 12,099 tons, primarily due to its minimal number of route 
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participants and flights. The average route length for participants in this corridor was 963 km, and the 

aircraft cruise time and distance were relatively short. The corridor predominantly utilized medium and 

small-sized aircraft, such as the A320 series with 228 flights and the B737 series with 109 flights, along 

with a few other small-sized aircraft totaling four flights.

 The trend of total air corridor carbon emissions aligns with aircraft CCD phase carbon emissions (Fig. 

7). Despite operating in the stratosphere where encountering low drag, slow airflow, and complex 

weather is more challenging, the maximum engine thrust has been reduced to 34%, resulting in 

relatively low CO2 output per kilometer. The LTO phase entails more complex operating conditions 

compared to the CCD phase, characterized by the engine operating at maximum thrust and  higher fuel 

consumption rates. Fuel consumption rates during take-off and climb processes were approximately 2.6 

to 3.4 times and 2.0 to 2.8 times higher than those during the CCD phase were. However, due to the short 

flight duration of the LTO phase, its impact on overall air corridor carbon emissions is not significant. 

Additionally, the CO2 emission factor for a single type of aircraft decreases as the distance flown 

increases (Fig. 8). The CO2 emission factor for an aircraft operating at maximum range is reduced by 

40.52 to 88.57% compared to that at minimum range. This reduction can be attributed to the fact that 

long-distance flights typically operate at higher cruising altitudes and speeds, where air density is lower, 

resulting in reduced drag and increased flight efficiency.



 

 Comparison and analysis of carbon emission efficiency in established air corridors

 • Two air corridors are operating at high-efficiency levels, namely the Harbin-Haikou corridor and the 

Harbin-Changsha corridor (Fig. 9), both with efficiency values of 1. This is primarily due to the long 

average distances flown by participants in these corridors (1,828 km for the Harbin-Haikou corridor and 

1,476 km for the Harbin-Changsha corridor), as well as the extended cruise times (7,451 s for the 

Harbin-Haikou corridor and 8,517 s for the Harbin-Changsha corridor). Based on the results of 

calculating CO2 emission factors for different aircraft types (Table 4), it is evident that longer flight 

distances result in lower CO2 emissions per unit distance flown. However, the overall carbon emission 

efficiency of the participants within these corridors remains high. After the establishment of the Harbin-

Haikou corridor and the Harbin-Changsha corridor, the average distances flown by participants 

increased by 453 km and 207 km respectively compared to before the establishment. The average cruise 

times of aircraft decreased by 125 s and 1,125 s respectively, indicating that after establishment, the 

average flight speeds of aircraft within these corridors have increased compared to before 

establishment, which is the main reason for maintaining high carbon emission efficiency.
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 • Two air corridors, the Beijing-Chongqing corridor and the Shanghai-Chongqing corridor, are 

operating at a moderate efficient level, with efficiency values of 0.701 and 0.531 respectively. Post-

establishment, the average distances flown by participants in these corridors increased by 585 km and 

88 km, respectively, compared to before establishment. However, the average cruise times of aircraft 

decreased by 330 s and 251 s, respectively. This indicates that post-establishment, aircraft within these 

corridors are flying at faster speeds compared to pre-establishment levels, resulting in lower carbon 

emissions per unit of time and higher carbon emission efficiency.

 • Two air corridors, the Beijing-Fuzhou corridor and the Urumqi-Hangzhou corridor, are operating at 

levels, with efficiency values of 0.464 and 0.406, respectively. This is primarily due to the increased 

average distances flown by participants in these corridors post-establishment. The Beijing-Fuzhou 

corridor saw an increase of 290 km, while the Urumqi-Hangzhou corridor saw an increase of 341 km. 

When the average cruise time of aircraft within a corridor remains constant, longer flight distances 

result in higher carbon emissions, leading to decreased carbon emission efficiency.

 • The Chongqing-Zhuhai corridor stands out for its exceptionally very low efficiency, registering at 

0.289, making it the least efficient corridor among the seven. This inefficiency primarily stems from the 

post-establishment increase in the average cruise time of aircraft within the corridor, which rose by 733 s 

compared to pre-establishment levels. With prolonged cruise times, aircraft emit more carbon, resulting 

in a notable decline in the corridor’s carbon emission efficiency.

DISCUSSION

 The increasing air traffic flow has led to issues regarding airspace resource utilization and aviation 

carbon emissions, which remain major challenges for China’s aviation industry. These issues not only 

affect civil aviation operational safety but also relate to the industry’s green development (Yinuo et al. 

2019). In terms of airspace utilization, air traffic demand in China is primarily concentrated in the 

eastern and southern regions, which together account for 31% of the country’s total area but 74% of the 

population and approximately 75% of the aviation demand. Although a dense network of flight routes 

has been established in these areas, the total available airspace is limited, leading to excessively high 

flight density in corresponding airspace and flight routes, especially during peak periods. This has 

increased the probability of flight delays and put pressure on air traffic control, particularly in major hub 

cities and economically developed regions. In areas such as the Beijing-Tianjin-Hebei region, the 

Yangtze River Delta, and the Greater Bay Area, where airport clusters are located, frequent flight take-

offs and landings result in a supplydemand mismatch in airspace resources, and their usage mutually 

impacts one another. In addition to the increased demand during holidays, the summer period is also 

often affected by severe convective weather, which tends to cause delays in major flight routes (Ran et 

al. 2024). For example, on August 16, 2024, due to heavy rain in Guangzhou, flights could not land, 
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resulting in varying degrees of take-off delays across the entire Beijing-Guangzhou air corridor. Some 

were delayed by up to 3 hours, affecting the normal utilization of airspace in at least eight provinces in 

China. Meanwhile, airspace in Central and Western regions remained largely unused. Regarding 

aviation carbon emissions, China has been the world’s secondlargest civil aviation market since 2005, 

following the United States. As the national economy continues to grow steadily, aviation demand is 

expected to rise, leading to a corresponding rigid increase in aviation carbon emissions. On a global 

scale, there is no significant difference between countries in terms of single-aircraft emission 

reductions. The long update cycle for aviation engine technology and the high cost of sustainable 

aviation fuels make it difficult to achieve significant emission reductions in the short term. As a 

responsible major country committed to sustainable development, China pledged at the 75th United 

Nations General Assembly in 2020 to peak carbon emissions by 2030 and achieve carbon neutrality by 

2060. Therefore, carbon reduction in the aviation sector is a key issue in achieving the national dual-

carbon goals. T he Chinese government and civil aviation authorities have proposed a series of relevant 

policies to address the current airspace issues and mitigate the challenges faced. The 2017 Government 

Work Report specifically mentioned the need to further optimize the national airspace resource 

allocation, improve airspace resource utilization, expand civil aviation usage areas, and promote 

airspace reform. In 2021, the Civil Aviation Administration of China (CAAC) released the 14th Five-

Year Plan for Civil Aviation Development, which proposed improvements to the airspace management 

system and modernization of the air traffic management system, including optimizing flight route 

networks and enhancing air traffic control service capacity. This plan set the general direction and 

objectives for efficient air corridor operations and airspace optimization. To address the existing 

aviation carbon emission pressures, the CAAC released the 14th Five-Year Plan for Green 

Development of Civil Aviation in 2022. The overall goal for civil aviation development is to achieve 

phased results in green transformation by 2025 and establish a green, and circular development system 

by 2035. By then, the aviation industry aims to achieve carbon-neutral growth in air transport and 

become a global leader in sustainable civil aviation development. Therefore, given the growing demand 

potential of China’s civil aviation market, achieving green transformation and full decarbonization 

within a tight timeframe will be a challenging and complex task.

 This study integrates airspace resource optimization with the issue of aviation carbon emissions. By 

identifying the structure of China’s aviation network, it delineates air corridors and validates the 

delineation results from the perspective of carbon emissions. Unlike previous studies, which have 

focused largely on technical aspects of aviation carbon reduction, this research explores carbon 

reduction from the perspective of airspace resource management. Finding the optimal decarbonization 

path through non-technical means is a key innovation and contributes to the theoretical exploration of 

green development in the civil aviation industry. Furthermore, while past research has predominantly 
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approached the issue from the perspective of airport terminals, focusing on congestion in the terminal 

areas and carbon emissions during the LTO phase, this study expands the research to include the 

optimization of airspace linear network structures and carbon emissions throughout the entire flight 

phase. By validating the research’s content from the angle of carbon emissions, it aligns more closely 

with societal development expectations.

CONCLUSION

 The research findings are divided into two main parts:

 • Based on the assessment of China’s airspace structure, this study aims to optimize airspace resource 

utilization. Seven air corridors are delineated across China based on the positions of flight ROC, 

incorporating a total of 196 routes and 16,185 f lights. The seven corridors are as follows: Chongqing-

Zhuhai corridor, Beijing-Fuzhou corridor, Urumqi-Hangzhou corridor, Harbin-Changsha corridor, 

Beijing-Chongqing corridor, Shanghai-Chongqing corridor, and Harbin-Haikou corridor. Among 

these, the Harbin-Haikou corridor has the most route participants and flight volumes, while the 

Chongqing-Zhuhai corridor has the fewest. The Harbin-Haikou corridor also has the highest flight 

frequency, and the Urumqi-Hangzhou corridor has the longest average flight distance for participants. 

The seven delineated air corridors collectively form a “diamond-shaped threedimensional structure,” 

with the Beijing-Tianjin-Hebei airport cluster, Yangtze River Delta airport cluster, Guangdong-Hong 

Kong-Macau Greater Bay Area airport cluster, and Chengdu-Chongqing region airport cluster at the 

vertices. The BeijingFuzhou corridor, Beijing-Chongqing corridor, Chongqing-Zhuhai corridor, and 

Harbin-Haikou corridor constitute the four edges of this structure, with the Shanghai-Chongqing 

corridor serving as the central axis. All five corridors are distributed in the region east and south of the 

Hu Huanyong Line, indicating a high correlation between China’s aviation network layout and 

population and urban distribution. It also reflects the overall control capacity of core airport clusters 

over air transport.

• A comparative analysis of carbon emissions before and after the delineation of the air corridors was 

conducted. The seven air corridors emitted a total of 619,431 tons of carbon, with the overall carbon 

emission trend aligning with the carbon emissions during the aircraft’s CCD phase. Among these, the 

Harbin-Haikou corridor had the highest emissions, while the ChongqingZhuhai corridor had the lowest. 

The emissions were closely related to the number of route participants, flight volumes, and aircraft types 

in each corridor. Large aircraft do not have flight environment advantages and are primarily affected by 

the CO2 emission factor. The corridors in a high carbon emission efficiency state are the Harbin-Haikou 

corridor and HarbinChangsha corridor, those in a medium carbon emission efficiency state are the 

Beijing-Chongqing corridor and ShanghaiChongqing corridor, those in a low carbon emission 

efficiency state are the Beijing-Fuzhou corridor and Urumqi-Hangzhou corridor, and the corridor in an 
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extremely low carbon emission efficiency state is the Chongqing-Zhuhai corridor. Compared  to the 

pre-corridor delineation, the average carbon emission per second generated by all aircraft in the seven 

corridors after delineation decreased by 79.75%, and the carbon emission per kilometer decreased by 

93%, indicating that the carbon emission efficiency of aircraft improved after the corridors were 

delineated. This improvement is mainly due to the reduction in the average distance of ROC and the 

corresponding reduction in carbon emissions from flight routes.

 Compared to existing studies (Yaqing et al. 2018), although this research divides only seven air 

corridors, the coverage is extensive, and the airspace structure is more prominent. The study found that 

the seven air corridors of different scales varied in terms of carbon emissions and emission efficiency, 

strongly confirming the uneven development of China’s aviation industry in terms of regions, time 

periods, and other factors. Approaching the optimization of airspace resource utilization from the 

perspective of air corridor planning not only helps optimize the structural layout of airspace resources 

and improve airspace utilization efficiency but also provides a solid theoretical foundation for China’s 

civil aviation industry to advance toward green development, offering valuable reference directions. 

However, the current study has certain limitations. Due to data collection difficulties, the analysis is 

based on only 1-month’s flight data to identify and delineate air corridors and route network structure, 

resulting in a small sample size that may not fully reflect the complex and dynamic real-world situation. 

Therefore, future research should focus on expanding the data sample, incorporating long-term and 

multidimensional data, and conducting comprehensive analysis from a dynamic perspective. This will 

be a key focus for advancing research in this field in the future.
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Methodology for Controlling Unmanned Aerial Vehicle 
Landing on a Ground Wheeled Robot Tethered by Cable

A B S T R A C T

INTRODUCTION

A heterogeneous system (RHS) consisting of a wheeled unmanned ground vehicle (UGV) and an 

unmanned aerial vehicle (UAV) connected by tether mechanism (TM) is undoubtedly an advanced 

development (Aleshin et al. 2020; Alonso Tabares and Mora-Camino 2017) for the purpose of 

monitoring the entire outer surface of an aircraft in its parking lot. With the help of such an RHS, 

monitoring is carried out simultaneously by cameras installed on both the UAV and the wheeled UGV 

(Cantelli et al. 2013; Kim et al. 2019; Wang L et al. 2020). When using such a wheeled UGV to inspect 

the aircraft surface, a critical factor is ensuring the operation of the TM, which guarantees the UAV 

collision avoidance with the aircraft under extreme wind impact conditions. In this case, both wind 

effects and TM forces act as external disturbances for the UAV, and its onboard control system must 

compensate them to a significant extent to ensure stable flight. The issue of compensation for external 

disturbances of UAV are widely covered in various studies (Liu et al. 2024; Uzun and Oktay 2023). 

There are differential methods of wind impacts in the UAV control system. However, these methods 

have natural constraints associated with limiting the maximum propellers’ thrust of UAV (Chodnicki et 

For a robotic heterogeneous complex (RHC) consisting of a ground wheeled robot (GWR) and an 

unmanned aerial vehicle (UAV) connected by a tether mechanism (TM) and subject to steady wind 

acting on the UAV, a methodology for selecting control parameters for UAV landing on the GWR is 

considered. Landing is proposed along the straight line connecting the tether attachment point on the 

UAV with its base on the GWR. A synthesis of control for the TM and UAV engines was carried out to 

ensure landing within a predetermined time. A corresponding mathematical model of UAV and TM 

motion was derived. It is shown that the UAV’s equilibrium positions along the line are stable, ensuring 

minimal engine energy consumption during landing. A synthesis of piecewise-linear damping 

coefficients in the control systems for the TM and UAV engines was performed by selecting moments of 

slope change based on synchronizing the instantaneous tether length and the distance from the UAV to 

the landing point. Simulation of the full equations of motion confirmed the feasibility of the proposed 

UAV landing methodology on the GWR and the validity of the assumptions made.

 Keywords: Unmanned aerial vehicles (UAVs); Aerospace vehicle landing; Wind effects; Tether 

systems; Control systems.
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al. 2022; Krishnakumar et al. 2015; Wang B et al. 2020). Generally, the UAV and the aircraft collision 

avoidance can be ensured if the aerodynamic force from the wind impact on the UAV is counteracted not 

only by the UAV propellers’ forces, but  also by the forces generated by the power-guided TM engine to 

a considerable degree. Moreover, it is assumed that the design of the TM is chosen so that the maximum 

force exerted by it is greater than the maximum force from the possible wind impact on the UAV. A 

diagram illustrating the force distribution applied to a multi-rotor UAV when held by TM is shown in the 

Fig. 1 (Aleshin et al. 2020).

Figure 1. Scheme of forces distribution applied to the UAV in the process of counteracting extreme wind 

impact. Oaxaza is a coordinate system (CS), rigidly connected with UAV (Oa is UAV’s center of mass, 

axis Oaxa is horizontal and applied normal to the UAV trajectory towards the outer surface of the 

aircraft, axis Oaza is applied to the position vertical); Oxz is CS centered at O in the wheeled UGV’s 

center of mass (its axes are parallel to the corresponding CS axes Oaxaza), O also coincides with the 

place of tether attachment in the TM; C is the starting point at which the UAV is located before a gust of 

wind and where it returns before landing, (its coordinates x0, z0); l0 is the tether segment length from the 

wheeled UGV to the UAV when it is located at the point C; Fw is the aerodynamic force created by the 

wind load on the UAV; Ft is the force acting on UAV from the tether side; Fpr is the thrust created by the 

rotors (Aleshin et al. 2020); mg is the UAV gravity (m is the UAV mass, g is the gravity acceleration); Fx, 

Fz is the drag force acting on the UAV, respectively, along the axes Xa, Za; α0 is the tether tilt angle with 

the respect to the horizon plane when the UAV is located at the point C. In Fig. 1, the motion from the 

point C (after the beginning of the wind load action) to the point E and inversely occurs according to a 

certain algorithm given in Aleshin et al. (2020) and including mainly the operation of the TM engine 

with the withdrawing the tether to its maximum value at point E (located directly next to the surface of 

the aircraft) and the subsequent UAV return to the point C where it is in an equilibrium position. The 

objective of this study is to analyze the possibility and synthesis of TM and UAV control systems under 
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conditions of the unchanged direction of the wind impact, in which the UAV is pulled up to the landing 

place on the wheeled UGV along the line connecting the point C of the UAV’s initial location and the 

tether’s attachment place O. This is done by organizing its motion along a straight line OC to such a 

height in the vicinity of the point O from which the landing can be carried out without the participation 

of TM in accordance with the landing algorithm of the control system of the UAV itself. 

Theoretical basis 

The mathematical model of the RHS under the specified motion conditions can be considered as a 

combination of the motion model of the UAV’s center of mass and the TM’s mathematical model with a 

DC motor (Aleshin et al. 2020):

where x,z are the coordinates of the UAV center of mass in the CS Oxz, α is the tether tilt angle with the 

respect to the horizon plane, U is the control voltage on the motor, I is the current in the motor drive 

winding, ωc is the angle rate of the shaft rotation of the motor with the coil (ωc > 0 when winding the 

tether on the coil), Mmet is the electromagnetic torque on the motor shaft, J is the moment of inertia of 

the motor shaft with the coil, ε is the torque coefficient of the viscous friction around the axis of the 

motor shaft’s rotation, Lc, Rc are the inductive property and resistance of the motor control winding, 

respectively, Ccef is coefficient of counter-electromotive force, n is the torque constant of the motor, 

and rc is the average radius of the coil with the tether. The forces of aerodynamic air resistance Fx a.r., 

Fza.r. directed by true airspeed are determined by the ratios:

where cdi , vi are the non-dimensional aerodynamic coefficients and true airspeed in the corresponding 

axes’ direction, Si are the UAV’s effective surface areas normal to the corresponding axes, and ρ is the 

air density. In the current study, the aerodynamic characteristics of the UAV were determined 

experimentally, but in general, this can also be done based on modeling (Xie et al. 2022).

METHODOLOGY

 Determining the stable position line of the UAV during landing

 As mentioned above, upon condition α = α0, the UAV is located at point C in the equilibrium position, 
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while the required tether tension Ft and lift Fpr can be expressed in terms of a known wind force’s 

constant Fw as follows:

 At the same time, the values of the forces Ft and Fpru will not change. Thus, at each point of the OС line, 

when performing Eqs. 3 and 5, the UAV will be in the equilibrium position. It must be shown that this 

position is stable. Figure 2 shows the forces acting on the UAV at the starting point C (Ft) and at its 

random displacement to the point C1 (Fw).

 In its turn, F2 is decomposed into components – vertical F3 and horizontal F4, the impact of which 

returns the UAV to a straight line α = α0. Under the effect of these forces, oscillations occur 

simultaneously along the horizontal and vertical axes. With damping, the UAV will return to the 

equilibrium position at the angle α = α0, although the UAV’s coordinates may change both vertically and 

horizontally. This equilibrium position satisfies the Lyapunov stability criterion (Pukdeboon 2011). The 

system’s simulation of the first three equations in Eq. 1 was carried out when performing Eq. 3 to 

validate the stability of the UAV’s straight-line α = α0 equilibrium positions, considering the 

introduction of damping terms.



 

 where , kxkz are the damping forces formed in the UAV engine control system when it is displaced 

along the corresponding coordinate axes. It is worth noting that to determine the tether tilt angle α in Eq. 

7, it is necessary to ensure the determination of high-precision navigation parameters of the UAV and the 

wheeled UGV. In particular, robust inertial guidance algorithms can be used regarding to the use of the 

wheeled UGV and UAV near the aircraft’s surface, where there are significant distortions of satellite 

navigation signals (Antonov et al. 2017; Veremeenko et al. 2020; 2021; Zharkov et al. 2022). The 

simulation result for m = 6 kg, F = 30 N, cd = 0,15, cdx = 0,12, Sx = 0.04 m2, Si = 0.03 m2, k - 2 N·s, x0 = 

20 m, z0 = 15 m, α0 = 0.6435 rad and initial conditions x = 21 m, z = 15.5 m is shown in Fig. 3 (the 

quantities’ steady-state values are α = α0, x = 20.38 m, z = 15.29 m).

 Synthesis of TM control

 Define the required additional control voltage ku·U0 on the TM engine in Eq. 2 corresponding to the 

desired UAV’s landing time tb on the wheeled UGV. Introduce the notations:

 where U0 and I0 are the steady-state values of voltage and current in the TM motor corresponding to the 

tether’s tension force in the equilibrium position at the angle I0 and ku, ki , kf are coefficients setting the 

corresponding control points. For clarity of further compilations, Eq. 1 is transformed by introducing 

the following terms: F0cosα0 – F0cosα0  in the Eq. 1 and F0sinα0 – F0sinα0 in the second one. 

Replacing now Fw = F0cosα0, Fpru = F0sinα0 and neglecting the aerodynamic forces’ influence, the 

following is obtained with regard to Eq. 8:
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 For the landing time tb analytical determination, it is assumed that 0 c LI=  and neglect (based on 

preliminary numerical estimates) the last term in the fourth equation. Then, the third and fourth 

equations in Eq. 9 can be considered separately from the first three. Adding to them the obvious ratio 

connecting tb with ωc and the tether’s length l0, get:
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Calculations have shown that with the same UAV and TM parameters, the time of the UAV’s motion to 

the landing point in accordance with Eq. 15 is significantly less than the time tb of the tether’s winding 

off by the TM engine in accordance with Eq. 10. This will lead to the tether’s sagging, subsequent 

oscillations of the UAV and a complete disturbance of the landing mode in question. To maintain the 

proposed landing mode, the value and direction of the UAV engines’ thrust were changed so that the 

times td and tb coincided. Studies have shown that it is advisable to form these additional forces as 

damping ones – as a of the UAV velocities according to the corresponding coordinates. Then, Eq. 15 will 

be as follows:

where fxd, fzd are the corresponding functions at which the synchronization of the current tether length 

obtained by solving Eq. 10 and the current position of the UAV is carried out – the values of 2 2 L x z = + 

(the current distance from the position of the UAV to the point of intended landing) obtained by solving 

Eq. 17. The formation of forces fxdX and fzdZ, for example, for a six-rotor occurs due to the total thrust 

vectoring (Arellano-Muro et al. 2013). For an anticipatory appraisal of the motion’s time of the UAV to 

the landing point, we will consider fxd as a constant value. In this case, the equations’ form of Eq. 17 

coincides with Eq. 11, and the solution, for example, of the first equation in Eq. 17 at the initial value will 

be written as:
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 To simulate the landing process, it is necessary to set the time tb = td. When choosing it, the following 

factors should be taken into account. It should be more than the time constant ai in Eq. 11 and ci in Eq. 

18, which will make it possible to consider the tether’s and the UAV’s motion in the landing process as 

quasi-stationary, acceptable for practical implementation. At the same time, the least (minimum) energy 

should be spent when generating voltage on the TM engine and in engines that create thrust. A detailed 

study of this issue is beyond the scope of the article.

 RESULTS

 To evaluate the effectiveness of the proposed UAV landing control system, simulation was carried out. 

The obtained data illustrate the necessary degree of synchronization between the UAV's movement and 

the operation of the tether mechanism, which in turn ensures the appropriate quality of the landing 

process.

 Set: 

For further calculations, the initial values of the UAV and TM parameters were assumed to be the same 

as in Aleshin et al. (2020): cosα0 = 0.8; J = 0.7 kgm2; m = 6 kg; cdz = 0.15; cdx = 0.12; ccef = 0.016 

Vs/rad; Fw = 30 N; ε = 3·10-3 Nm/rad; n = 0.5 Nm/А; I0 = 25 m. When using the ratios Eq. 14 and Eq. 16 

to achieve the minimum difference between td and tb, the following results were obtained for the 

conditions: Rc = 0.2 Ohms; Rc = 0.3 m, while td increased from 10 s to 28 s. For td = 60 s from Eq. 19, the 

value was determined numerically, based on the division method of the segment in half (Tikhonov et al. 

1995), obtained fxd = 0.916 value and the following values in Eq. 8:
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Note that the motion time is close to the one set in Eq. 20. Simultaneously, near the landing point, the 

UAV’s speed is unacceptably high. Now, consider a situation where the wind force remains constant but 

its magnitude depends on the height above the Earth’s surface (absolute altitude). Obviously, in the 

vicinity of the landing point, the wind force will decrease so much as that only the regular UAV control 

system will be sufficient for further landing. Let, for example, the dependence of wind strength on 

height be given by the function (Turgut and Usanmaz 2016):

 Modeling of the landing process will be carried out according to the following algorithm. From height z 

= z1 to z = z3 (z3 > z1), landing occurs due to the attraction of the UAV along a line close to α = α0, while 

the formation of the value of the control voltage U = KuU0(Z) in Eq. 2 is carried out in accordance with 

the ratio (Eq. 4) (for U0(Z(t))) and the coefficient ku is determined from Eq. 14 and is constant 

throughout the entire motion from z = z1 tо z = z2. The formation of coefficients fxd and fzd, as before, is 

made from the condition of ensuring synchronization of the current tether length and the UAV’s 

position. At altitude z = z3 only the voltage U = U0(z), corresponding to the wind force at altitude z = z3 

is applied to the TM engine, while damping forces fzdz and fxdx continue to form in the UAV engines. In 

this case, the UAV’s speed gradually decreases and UAV’s position becomes stable due to the UAV’s 

stable position relative to the line α = α0. However, under the action of inertia, the tether continues to 

wind off. To synchronize the tether’s length with the UAV’s coordinates, an appropriate compensating 

voltage is formed on the TM engine. The UAV hovers, then further landing is carried out with the TM 

engine turned off only due to the operation of the standard UAV control system. Figures 6–9 represent 

the results of modeling. Figures obtained on the basis of integration (Eq. 1) with Coordinat, m the 

corresponding forming of functions fxd and fzd in Eq. 17 for z3 = 5 m and the UAV and TM parameter 

values mentioned above.
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 DISCUSSION

 Under conditions of increasing wind force with changes in the UAV’s height, an algorithm for its 

landing has been proposed, including: attraction of UAV along a straight line connecting the points of 

attachment of the tether to the UAV and the wheeled UGV, achieved through the formation of a control 

voltage in the form of the sum of the main voltage, countering the wind force at each height and the 

voltage controlling the winding of the tether, which is proportional to the main voltage with a 

predetermined proportionality coefficient; and the formation of the lift in the UAV engines from the 

main constant force, compensating for its weight and the vertical component of the tether tension force, 

along with damping forces that allow synchronization of the current tether length with the distance from 
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the UAV to the tether attachment point on the landing site of the wheeled UGV.

Future research is planned to explore the effects of wind gusts, characterized by their known 

probabilistic properties, on the dynamics of UAV flight during takeoff and landing processes, following 

the methodology outlined in this paper. The modeling results have confirmed the functionality of the 

proposed UAV landing algorithm on a moving platform under quasi-constant extreme wind conditions.

CONCLUSIONS

 The analysis of the obtained results allows for the following conclusions:

 • The UAV’s position on the straight line connecting the tether attachment points on the UAV and the 

wheeled UGV, under a constant wind effects, is stable according to the Lyapunov stability criterion. 

Thus, with an initial deviation of UAV of 1 m horizontally and 0.5 m vertically, after several oscillations, 

it returns to the equilibrium position at the coordinates related by the equation of the indicated line (Fig. 

3);

 • Based on preliminary numerical estimates, it has been possible to divide the initial general system of 

equations of motion of the UAV and TM into two independent systems. For each of these, an analytical 

solution has been obtained and, based on the desired landing time, preliminary control coefficients in the 

TM engine and damping forces in the UAV engines have been selected;

 • For the simulation, the initial values   of UAV and TM parameters were taken to be the same as in 

(Aleshin et al. 2020): cosα0 = 0.8; J = 0.7 kgm2; m = 6 kg; cdz = 0.15; cdx = 0.12; ccef = 0.016 Vs/rad; 

Fw = 30 N; ε = 3·10-3 Nm/rad; n = 0.5 Nm/А; I0 = 25 m.

 • The landing time has been selected considering: ensuring the UAV’s quasi-stationary motion during 

landing; acceptability for practical implementation; energy costs during the formation of voltage on the 

TM engine and in engines that create thrust;

 • A simulation of the solution of the complete equations of UAV motion during landing has been carried 

out, and numerical synthesis of piecewise linear damping coefficients has been conducted by selecting 

the moments in time of change of their slope from the condition of synchronization of the current values   

of the cable length and the distance from the UAV’s location during the movement to the point of the 

expected landing.

 In this case, from the initial height z1 = 15 m to the height z3 = 5 m landing occurs due to the operation of 

TM by attracting UAV along a line close to α = α0, while forming the value of the control voltage U = 

kuU0(z) is carried out in accordance with the change in wind strength with height, and the coefficient ku 

is constant throughout the entire movement up to the height z2 = 3 m at which the wind force is 

practically zero (Fig. 5). In this case, the damping forces fzdz and fxdx, continue to form in the UAV 

engines to ensure synchronization of the current cable length and the UAV position. The speed of UAV 

gradually decreases and its position stabilizes due to the stability of UAV position relative to the straight 
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line α = α0. The UAV hovers, after which further landing is carried out with the TM engine turned off, 

only due to the operation of the standard UAV engine control system. T he corresponding Figs. of the 

change in UAV coordinates are presented in the Figs. 6–9.
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Challenges of Computer Vision for Commercial Unmanned 
Aerial  Vehicle Detection

A B S T R A C T

INTRODUCTION

Nowadays, research on the application of computer vision to the detection of commercial unmanned 

aerial vehicles (UAVs) is proving to be highly relevant and important due to several key factors 

(Mykhalevskiy et al. 2024; Yermolenko et al. 2024). With the increasing number of commercial UAVs 

in various industries such as transport, agriculture, surveying, and environmental monitoring, there is a 

need for effective detection systems (Cazzato et al. 2020; Chen et al. 2023). This is necessitated not only 

by the increased security and control over the use of such devices but also by the protection of data 

privacy, especially in areas where sensitive information is present. Research in this area is also 

stimulated by the active development of the drone technology market itself. T he constant development 

of new models and types requires appropriate tools and technologies for their detection and monitoring. 

T he research problem includes several aspects, including ambiguity in the choice of optimal drone 

detection methods, limitations in the performance of existing algorithms when processing large 

The study aims to analyze the existing computer vision techniques for commercial drone detection to 

identify their advantages, disadvantages, and determine the best approaches in different application 

scenarios. The research methodology used synthesis methods to explore and propose combinations of 

techniques based on an analysis of the methodology and results of other works in the literature. It 

employed algorithms and sensor data analysis to assess the effectiveness of detection methods, and 

deduction to formulate hypotheses and conclusions based on data and theories. The main research 

results include the development of computer vision methods for detecting commercial drones, 

identifying their visual detectability at different altitudes, analyzing different object detection 

methods, and evaluating the applicability of these methods for commercial applications. In addition, 

the study identified the advantages and disadvantages of applying computer vision to commercial 

drone detection and offered recommendations for further research and practical implementation. The 

practical value of this study is to improve the detection systems of commercial drones, thereby 

enhancing the safety and efficiency of their use. 

Keywords: Aircraft; Detection; Sensor systems; Performance evaluation; Advanced technology
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amounts of data, difficulties in adapting algorithms to different survey conditions and customer 

requirements, and problems of defense against cyber-attacks and hacking of detection systems (Perry 

and Guo 2021). Other issues include the need to address ethical and legal considerations in the use of 

computer  vision technology for UAV detection, and the need to improve the performance and accuracy 

of detection systems to effectively monitor the growing number of commercial drones in various 

industries and domains.

 Kozachenko (2021) addressed the model of complex application of measures to detect small UAVs, the 

problems of radio electronic suppression of the UAV navigation system, as well as the features of radio-

electronic suppression of the UAV navigation system based on the reception of satellite navigation 

system signals, and the problems of radio-electronic suppression of UAV control and data transmission 

radio lines. However, it is necessary to analyze how effective the proposed methods are in real 

conditions and whether they apply to different types of UAVs.

 According to Zhao et al. (2022), the field of computer vision is sufficiently developed to detect and track 

intruding UAVs. They propose a DUT Anti-UAV dataset that includes extensive material for training 

detection and tracking algorithms. However, the dataset’s effectiveness and its applicability in real 

surveillance environments require further study. Pawełczyk and Wojtyra (2020) note the significant 

increase in the number of drone incidents and the need for drone detection systems running on low-

performance hardware. However, the performance and reliability of such systems under different 

operating conditions should be investigated in more detail. Leira et al. (2020) study an object detection, 

recognition, and tracking system for UAVs applied in a maritime object tracking system. It is important 

to extend the research to other applications of this system and evaluate its performance in different 

scenarios. Bazeltsev (2020) states that over the last 10 years, the field of UAVs has expanded rapidly. 

They are used in various environments such as reconnaissance, surveying, rescue operations, and 

mapping. UAVs are maneuverable in the air, can be operated by remote control, and can reach high 

altitudes and distances. Many UAVs are equipped with an inbuilt camera, such as an action camera, 

which allows the drone to take photos and videos from various angles. However, there are some 

disadvantages: drone control can be quite complicated. Even when applying the latest advances in 

software, the pilot must be very careful, as losing control of the drone could mean losing the UAV itself. 

His study did not address the aspect related to technical limitations and potential risks that may arise 

when using drones. T he study aims to investigate and evaluate existing computer vision techniques for 

commercial drone detection, with a focus on identifying the most effective approaches for UAV 

detection across various contexts. By considering the current limitations and challenges discussed in the 

literature, the study seeks to assess the performance and applicability of these techniques in realworld 

scenarios, providing a comprehensive understanding of the strengths and weaknesses of different 

methods.
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METHODOLOGY

 The methodology consists of nine sequential steps, each addressing a critical aspect of the research 

process. These steps include selecting performance indicators, conducting data analysis, synthesizing 

different algorithms, integrating data from various sensors, applying fusion methods, evaluating 

algorithm performance, analyzing trends and patterns, researching the visual detectability of drones, 

and formulating hypotheses and conclusions. A detailed description of each stage is provided below to 

ensure a clear understanding of the methodology and its application in the context of this study. The 

simplified process flow (Fig. 1) summarizes the main steps in the methodology for the study of the use of 

computer vision to detect commercial drones.

 Selecting Performance Indicators

 The first step was to select appropriate performance indicators to evaluate the use of computer vision in 

commercial drone detection. The key metrics are accuracy, completeness, F-Score, detection rate, and 

the number of false positives and missed detections. These metrics enable a comprehensive quantitative 

evaluation of the performance of detection models, focusing on their accuracy and effectiveness under 

varying conditions. Evaluation and Optimization of Drone Detection Methods After collecting and 

analyzing the data, conclusions were drawn about the effectiveness of various drone detection methods. 

This stage allows us to evaluate which methods provide the best results in real-world conditions and 

helps to identify weaknesses in the applied approaches that require further optimization.
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Synthesis of Computer Vision Algorithms

 In this stage of the research, a synthesis method was used to combine different computer vision 

algorithms to create a more efficient and reliable commercial drone detection system. By combining the 

strengths of several methods, better detection quality was achieved and a wider coverage of different 

scenarios and usage conditions was provided, which increased the system’s efficiency.

 Combining Data from Sensors

 The fusion method was also used to combine data from different sensors, such as video cameras, radars, 

and Light Detection and Ranging (LIDAR). This has resulted in a more comprehensive drone detection 

system that takes advantage of the strengths of each sensor to improve the accuracy and reliability of the 

system in different environments. Combining data from different sources makes the system more 

adaptable to varying conditions.

 Application of the Fusion Method

 The fusion method involves more than just integrating various input data into a model for classification 

and detection tasks. It also encompasses the combination of results from different models after they 

have processed the data. By using outputs from multiple models together, after they have completed 

their respective processes, we can enhance the stability and efficiency of the drone detection system. 

This approach helps reduce the number of false positives and improves the accuracy of target detection, 

as it leverages the strengths of different models and algorithms to provide a more robust final result. 

Thus, the fusion method not only integrates data but also merges the outcomes of different models to 

achieve more reliable and precise detections.

Assessment of Algorithm Efficiency

 The study used an analytical approach to evaluate the effectiveness of different drone detection 

algorithms based on metrics such as accuracy, completeness, and detection rate. This stage allows 

comparing the effectiveness of different methods and choosing the most suitable one for specific 

application conditions, which is important for further optimization of the system. Analysis of Trends 

and Patterns Analytical methods were used to identify the main trends and patterns in the behavior of 

detected objects. This allows for a better understanding of the detection process and optimization of the 

overall system performance, particularly by adapting to typical drone behavioral patterns. Studying 

such trends helps to improve detection algorithms for specific conditions.

 Analysis of Factors Affecting Drone Visual Detectability

 The study also examined the visual detectability of drones at different heights and distances. For this 
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purpose, data from various sources, such as video footage, sensors, and flight simulations, were used. 

This research allows for the improvement of visual detection methods by taking into account various 

factors that affect drone visibility, such as weather conditions and flight altitude.

 Formulation of Hypotheses and Conclusions

 The last step is to formulate hypotheses and conclusions based on data analysis and logical thinking. 

Using the deductive method, researchers formulate theoretical models that explain the effectiveness or 

ineffectiveness of specific drone detection methods. This stage provides general principles and patterns 

underlying the effectiveness of detection algorithms and suggests areas for further research and 

improvement of detection technologies.

 RESULTS

 Evolution of Computer Vision Techniques in Drone Detection

 The history of computer vision development in drone detection can be traced through key milestones 

that show the evolution from early image processing techniques to the advanced methods used today. 

This timeline outlines the significant advancements in the field, with each stage building upon the 

previous one (Cazzato et al. 2020).

 The journey of computer vision began with the first attempts to use computers to analyze images. In the 

early stages, computer vision was limited to primitive image processing techniques, such as filtering 

and thresholding. These methods focused on basic tasks like enhancing image contrast and detecting 

simple patterns. During this period, researchers also began experimenting with pattern recognition 

techniques to detect objects in images, laying the groundwork for more advanced methods. T he 

foundations of computer vision were laid during the initial attempts to use computers for analyzing 

visual data. At the early stages, primitive image processing techniques such as filtering and thresholding 

were widely used. Filtering methods aimed to reduce noise, enhance image contrast, and emphasize 

important features in visual data. Thresholding, on the other hand, was employed to segment images 

into binary formats by differentiating objects from their background based on pixel intensity values. 

Although these methods were simple and limited in scope, they provided critical insights into the 

challenges and possibilities of automated visual analysis, establishing a framework for more 

sophisticated approaches. T hese early techniques were closely tied to the development of pattern 

recognition methods, which marked a significant step forward in object detection. Researchers began 

experimenting with statistical models and feature extraction techniques to identify and classify objects 

within images (Borodin et al. 2024; Xu et al. 2022). This work laid the groundwork for modern methods 

introducing the idea of extracting relevant information from raw visual data and using it to train 

algorithms. Over time, the limitations of these approaches, such as their inability to handle complex 

patterns or adapt to variations in lighting,  and object orientation, highlighted the need for more 
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advanced methods, paving the way for the development of machine learning and deep learning-based 

techniques.

 Between the 1970s and 1990s, computer vision saw significant development with the introduction of 

methods based on the extraction of characteristic features from images. Geometric analysis, pattern 

matching, and object classification became widely used in UAV detection tasks. These methods aimed 

to identify key features in images, such as edges, corners, and textures, to recognize objects. However, 

the computational limitations of the time and the huge variability of imaging conditions, such as lighting 

and scale, hindered further progress.

 The period from 2000 to 2010 marked a resurgence in computer vision for drone detection, driven by 

advances in computing power. Machine learning algorithms started to be actively applied to computer 

vision tasks, and object classification and detection algorithms trained on large datasets produced 

significantly better results (Bay et al. 2006; Lowe 2004). Datasets specifically designed for UAV 

detection became crucial to the development of this field, as they enabled the training of models that 

could handle the complexities of real-world drone detection. T he true breakthrough came after 2010 

with the advent of deep neural networks and deep learning techniques, which revolutionized computer 

vision. Convolutional Neural Networks (CNNs) emerged as the dominant method for image processing 

and object detection. CNNs allowed for the automatic extraction of hierarchical features from images, 

leading to more accurate and robust detection systems (Borges et al. 2024; Borodin et al. 2024). The 

application of transfer learning methods also enabled the adaptation of pre-trained models for specific 

tasks like drone detection. This period has seen continuous progress in the field, with CNNs powering 

some of the most advanced and efficient object detection models used today. The evolution of computer 

vision techniques for drone detection has laid a strong foundation for the development of advanced 

algorithms and architectures (Xu et al. 2022). With the advent of CNNs and their ability to extract 

complex hierarchical features, modern computer vision has reached new heights. Building on this 

progress, it is crucial to explore the key algorithms and architectures that underpin contemporary 

advancements in drone detection.

 Key Algorithms and Architectures in Computer Vision for Drone Detection

 Throughout the development of computer vision techniques for UAV detection, several key algorithms 

have played an important role. One such method is Harris corner detection, which identifies points in an 

image where the intensity changes significantly in multiple directions, ideal for detecting distinctive 

features in images. Another important method is the scale-invariant feature transform (SIFT), which 

generates local descriptors that are invariant to scale and rotation, making it particularly useful for 

feature description in various environments. Speeded-up robust features (SURF), a faster alternative to 

SIFT, improves feature extraction speed while maintaining robustness, making it suitable for real-time 
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applications. Both SIFT and SURF are widely used in computer vision as feature description methods, 

typically applied in matching algorithms to find pairs of similar features (Douklias et al. 2022). These 

methods, along with others, have formed the foundational building blocks for more sophisticated and 

accurate object detection algorithms used in modern drone detection. Deep learning algorithms, such as 

CNNs, are highly computationally demanding, especially during the training phase. These models 

require substantial computational resources due to the large volume of data required for training and the 

complexity of the models themselves, which consist of many layers and parameters (Tang et al. 2023). 

Training deep learning models typically requires powerful graphics processing units or specialized 

processors, as these computational resources accelerate the training process. During inference 

(prediction) with these models, the computational requirements are reduced but still remain high, 

particularly for real-time applications in complex conditions (Douklias et al. 2022). Traditional 

computer vision methods, such as Harris, SIFT, and SURF algorithms, are generally less 

computationally demanding compared to deep learning-based approaches. These algorithms rely on 

simpler techniques to detect distinctive points in images, which reduces the strain on hardware 

resources, making them suitable for tasks with fewer objects or where feature recognition and matching 

are the primary objectives. For example, algorithms like SIFT and SURF can perform well in scenarios 

where object detection is not real-time or where the dataset is smaller and less complex. While these 

methods require less computational power, they may struggle with large, complex datasets or tasks 

involving real-time object detection, where the need for higher accuracy and faster processing speeds 

becomes critical. In these cases, deep learning models, despite their higher computational cost, 

demonstrate significant advantages. Their ability to process large datasets and handle complex features 

allows them to outperform traditional algorithms in tasks such as detecting objects in real-time or in 

highly varied environments.

While traditional methods like SIFT and SURF may offer lower computational costs in specific 

scenarios, they cannot match the effectiveness of deep learning models when dealing with more 

complex, large-scale tasks. The trade-off between computational efficiency and detection performance 

becomes evident when considering the increasing demands of modern object detection applications. 

Faster CNN (R-CNN) improves the original R-CNN by integrating the region proposal network (RPN) 

to streamline object detection, combining region proposals and classification into one network, 

significantly boosting both speed and accuracy (Kakaletsis et al. 2021). You Only Look Once (YOLO) 

takes a different approach by predicting bounding boxes and class probabilities directly from the image 

in a single pass, making it suitable for real-time applications. Its various versions (YOLOv1 to 

YOLOv5) have enhanced speed, accuracy, and handling of small objects. Single Shot Multibox 

Detector (SSD) eliminates region proposals, performing detection in a single pass with multiple feature 

maps for different object sizes, offering a balance of speed and accuracy. Mask R-CNN extends Faster 
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R-CNN with a branch for instance segmentation, enabling pixel-level object delineation, which is 

crucial for detailed applications like medical imaging or autonomous driving. T he Table 1 compares 

different CNN architectures such as YOLO, Faster R-CNN, SSD, and Mask R-CNN on several 

important metrics including accuracy, precision, recall, F1-Score, frame rate, resource consumption, 

suitability for real-time applications, and application domains. These metrics are key to selecting the 

appropriate architecture depending on the specific requirements of the object detection task, such as 

speed, accuracy, and resource consumption.

 Following the comparison of CNN architectures for object detection presented in Table 1, it is also 

important to evaluate architectures designed for object classification tasks. It is important to note that 

the YOLO architecture discussed here is YOLOv5, which became widely adopted due to its opensource 

nature, ease of use, and stable performance at the time the paper was written. However, later versions 

such as YOLOv6, YOLOv7, and the more recent YOLOv8 and YOLOv9 have introduced significant 

improvements in accuracy, speed, and resource efficiency. These newer versions have enhanced 

capabilities in handling small objects, improved robustness in varying environmental conditions, and 

optimizations for edge computing devices. YOLOv8 and YOLOv9 represent significant advancements 

in the YOLO architecture, building upon the successes of earlier versions like YOLOv5 and YOLOv7. 

These newer iterations focus on enhancing the overall performance of the YOLO family by improving 

both accuracy and efficiency, addressing some of the limitations seen in previous versions. YOLOv8, 

introduced with improved accuracy and speed, has brought about several innovations in object 

detection. One of the key features of YOLOv8 is its ability to better handle small objects, which had 

been a challenge for earlier versions. The model’s architecture includes advanced techniques like 

feature fusion and multi-scale detection, which help in extracting finer details from the input images and 

improve the model’s ability to detect objects at various scales. These advancements make YOLOv8 

particularly effective in applications such as security surveillance, autonomous driving, and industrial 

inspections, where detecting small or partially obscured objects is crucial. Furthermore, YOLOv8 has 

been optimized for edge computing devices, allowing for faster inference and lower resource 

consumption, which is essential for real-time applications that require low latency.

 YOLOv9, the latest version, continues to push the boundaries of real-time object detection by further 

refining the architecture for greater robustness and efficiency. It includes several optimizations, such as 
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improved loss functions and the use of advanced backbone networks that contribute to better feature 

extraction. YOLOv9 introduces enhanced capabilities for handling challenging environmental 

conditions, including low-light scenarios and extreme weather, which often cause difficulty for 

traditional object detection systems. Additionally, YOLOv9 has been designed with a focus on 

computational efficiency, allowing it to maintain high accuracy and speed even in resource-constrained 

environments. This makes YOLOv9 particularly suitable for deployment in areas such as mobile 

robotics and embedded systems, where computational power is often limited but real-time performance 

is essential. Table 2 below provides a detailed comparison of popular architectures, including AlexNet, 

VGG, ResNet, and Inception. These architectures are assessed based on performance metrics such as 

Top-1 and Top-5 accuracy, parameter count, depth, and their notable features. This comparison 

highlights the evolution of classification-focused CNN architectures and their distinct advantages, 

which play a crucial role in selecting the most suitable model for specific classification tasks.

AlexNet has become one of the key architectures that has significantly advanced the field of deep 

learning by dramatically reducing the classification error rate compared to previous methods. However, 

it’s worth noting that deep neural networks for classification already existed before AlexNet, in 

particular the LeCun LeNet5 network, which was developed in the 1990s (Bangar 2022). LeNet5 

consisted of three main components: convolutional, clustering, and linear activation functions, and 

included seven layers. The main problem at the time was the loss of gradient along deep networks, 

which made training them much more difficult. With the advent of AlexNet, the use of ReLU activations 

and deeper architectures significantly reduced the error rate and improved training efficiency, which 

was an important step in the development of deep learning. Although AlexNet was not the first deep 

network, its innovations were key to the further development of this field.

Deep CNNs represent an evolution from shallow neural networks, characterized by their significantly 

larger number of layers and parameters. Unlike shallow methods, which typically involve one or two 

convolutional layers for simple feature extraction, deep CNNs are designed to capture hierarchical and 

complex patterns in data by stacking multiple convolutional and pooling layers. T his depth allows for 

the extraction of high-level features essential for complex tasks such as object detection and 

segmentation. T he specialized techniques in deep CNN architectures address inherent challenges such 

as the vanishing gradient problem, which becomes more pronounced as the network depth increases. 

Innovations like batch normalization (to stabilize and accelerate training), skip connections (as 
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introduced in ResNet, to mitigate gradient loss), and advanced loss functions (e.g., focal loss in dense 

object detection) enable deep networks to learn effectively even with increased complexity.

 Furthermore, these architectures incorporate advanced feature extraction techniques to handle a variety 

of real-world challenges. For example, multi-scale feature extraction, as seen in SSD and YOLO 

architectures, enables robust detection of objects across different sizes and conditions. These 

innovations allow deep CNNs to perform effectively in diverse scenarios, such as varying lighting, 

background noise, and object occlusion, providing a significant advantage over earlier shallow 

approaches. Deep neural networks have achieved remarkable advancements across various fields due to 

key innovations that address critical limitations of traditional models. Batch normalization stabilizes 

and accelerates training by normalizing the input distribution for each layer. Skip connections, as 

implemented in ResNet, ensure efficient gradient flow throughout the network, mitigating the vanishing 

gradient problem in deep architectures. Multi-scale feature extraction, utilized in SSD and YOLO 

architectures, enhances object detection accuracy across various sizes and challenging conditions. 

These innovations have made deep neural networks highly effective and adaptable for complex image 

analysis tasks.

 The application of neural network architectures in computer vision opens new opportunities for solving 

a variety of problems related to image processing. Particularly significant are CNNs, which have 

become a major tool in this field. These networks consist of convolution layers that allow the automatic 

extraction and analysis of various features from images (Prayudi et al. 2020). T he application of CNNs 

finds wide use in object detection tasks, where the network is trained to recognize and localize objects in 

an image. In addition, they are successfully used in image segmentation, where it is required to identify 

each pixel of an image and classify it to belong to a particular object or class.

 The RPN is a fundamental innovation in the Faster R-CNN architecture that significantly enhances 

detection speed by generating region proposals directly within the network. Unlike earlier methods such 

as R-CNN and Fast R-CNN, which relied on external algorithms like selective search for proposal 

generation, the RPN integrates this process into the neural network itself, streamlining the overall 

workflow. The RPN operates as a fully convolutional network that scans the input image and predicts 

candidate bounding boxes, along with their objectness scores, which indicate the likelihood of the 

region containing an object. By using predefined anchor boxes of varying sizes and aspect ratios, the 

RPN effectively detects objects of different scales and shapes in a single forward pass. Additionally, its 

shared convolutional layers with the main detection network reduce computational overhead, making 

the approach more efficient.

 YOLO, with its multiple iterations such as YOLOv1, YOLOv2, YOLOv3, YOLOv4, and YOLOv5, is 

renowned for its real-time object detection capabilities (Kouvaras and Petropoulos 2024; Prayudi et al. 

2020). YOLO processes an image in a single forward pass, dividing it into a grid and predicting 
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bounding boxes and class probabilities simultaneously. Each subsequent version of YOLO has 

introduced improvements, such as better feature extraction, optimized anchor boxes, and enhanced 

training strategies, resulting in higher speed and accuracy.

 SSD achieves efficient and accurate object detection by combining multi-scale feature extraction with 

direct predictions of bounding boxes and class scores. Unlike Faster R-CNN, SSD eliminates the need 

for a separate proposal generation stage, making it more computationally efficient. By using feature 

maps at multiple scales, SSD excels at detecting objects of varying sizes and performs well in real-time 

applications.

 In addition to object detection, CNN architectures are widely used for image classification tasks, where 

the goal is to assign an image to a specific category or class. Notable architectures such as AlexNet, 

VGG, ResNet, and Inception have set benchmarks in image classification by introducing innovations 

like deeper layers, skip connections, and improved convolutional operations. The general trend in CNN 

development is to create deeper and more efficient architectures capable of processing large volumes of 

data while maintaining high accuracy and speed. These advancements have driven the success of CNNs 

in both object detection and image classification tasks, solidifying their role as a cornerstone of modern 

computer vision (Chen et al. 2023).

 Building on the advancements in CNN architectures and their pivotal role in object detection and 

classification, it is essential to consider how these methods are applied specifically to UAV detection. 

The unique characteristics of UAVs, their visual detectability under varying conditions, and the 

methods employed to identify them using computer vision form the core of modern UAV detection 

systems.

 Characteristics, Visual Detectability, and Detection Methods for UAVs

 Unmanned aerial vehicles are a variety of devices that do not require a pilot on board to perform tasks. 

They vary in size, shape, and characteristics, depending on their purpose (Tian et al. 2020a). One of the 

most common types of UAVs is multirotor vehicles equipped with multiple rotating rotors. This 

includes quadcopters with four rotors, as well as three-, six-, and eight-copters. They can range in size 

from small, such as the size of the palm of your hand, to large professional models with wingspans of 

several meters. Multi-rotor UAVs are usually highly maneuverable and capable of hovering in place in 

the air. Another type of aircraft is fixed-wing vehicles, similar to those found on conventional aircraft. 

They provide a longer flight time than multirotor vehicles. They range in size from small radio-

controlled models to large vehicles capable of carrying heavy and flying long distances. They are often 

used for monitoring, reviewing, and surveying large areas. There are also hybrid UAVs that combine the 

features of both multi-rotor and fixed-wing aircraft. These vehicles offer flexibility of use and can 

combine the advantages of both types (Ariza-Sentís et al. 2023). Their characteristics vary depending on 

their intended use and may include maximum speed, range, and duration of flight, payload capacity, 
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types of sensors and equipment used, and degree of autonomy and protection from external factors such 

as weather and wind. The visual detectability of drones at different altitudes and distances depends on 

several factors, including their size, shape, color scheme, and environmental lighting and background.

 At low altitudes and close ranges, UAVs can be easily spotted due to their distinctive sounds and 

movement characteristics. Multirotor vehicles, for example, often emit a characteristic noise from 

rotating rotors, making them visible even at low altitudes. Fixed-wings UAVs may be less conspicuous 

at low altitudes due to the lack of sound, but their large size and flight characteristics can attract attention 

(Lai and Huang 2020). However, at high altitudes and long distances, their visual detectability is 

reduced. Multirotor vehicles may become less conspicuous due to their reduced size against the 

surrounding background and the lack of brightness of LEDs or other markers on the hull. Fixed-wings 

UAVs, on the other hand, may retain higher detectability due to their larger size and brighter markers. 

Lighting also plays an important role in the visual detectability of aircraft. In bright sunlight, the contrast 

between the vehicle and the environment may be low, making them less visible. However, in low-light 

conditions or when the angle of view changes, the vehicle may become more visible (Castellano et al. 

2020). Thus, visual detectability at different altitudes and distances depends on many factors and can be 

vary depending on the viewing conditions. Methods for detecting objects in images can be divided into 

two main groups: feature-based methods and methods using object detectors. Feature-based methods 

are designed to extract characteristic features of objects in images, such as corners, contours, or textures. 

The classic methods of this group include SIFT and SURF. These methods have low computational 

requirements and can provide fairly good accuracy in images with a small number of objects. At the 

same time, they have significant limitations: sensitivity to changes in lighting, scale, and viewing angle 

(Oyallon and Rabin 2015; Sadou and Njoya 2023). Adapting and optimizing computer vision models 

for different drone detection scenarios requires the use of specialized data augmentation methodologies. 

While data augmentation is often employed to minimize the amount of training data, its primary 

objective is frequently to achieve class balancing. For instance, in cases where certain drone classes are 

underrepresented in the dataset, augmentation techniques such as duplicating and transforming samples 

of the minority class (e.g., through rotation, scaling, or mirroring) can help balance the dataset. This 

ensures the model does not overfit to more frequently occurring classes, improving its generalization 

ability across all categories. In addition to augmentation, simpler techniques like data downsampling 

can also address imbalances. By reducing the number of samples in overrepresented classes, this 

method provides a straightforward approach to balancing datasets, particularly when computational 

resources or data complexity are limited. It is worth noting that in some cases, alternative strategies such 

as training from scratch, transfer learning, or fine-tuning on pre-trained models can eliminate the need 

for data augmentation entirely. These methods enable model adaptation to specific tasks by leveraging 

existing knowledge or highly customized training processes, thereby bypassing the need for extensive 
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augmentation (Sivakumar and Tyj 2021). Color transformations are an equally important tool in 

enhancing the robustness of drone detection models. Changing the brightness, contrast, saturation, 

adding noise, and simulating different color spaces help models become invariant to variations in 

lighting and camera sensors. This approach is critical for ensuring stable operation of drone detection 

systems in different weather conditions and times of day. These transformations can be applied 

effectively as long as spectral information is not crucial for the specific method being used. For 

example, if only RGB data is being used, almost any transformation can be applied to the image to 

increase the amount of data and make the training set as general as possible, thus representing the most 

diverse situations. However, if spectral information is important, such transformations should not be 

used. More advanced techniques include generative data augmentation methods. Generative 

Adversarial Networks (GANs) allow for the creation of synthetic images of drones with a high degree of 

realism. These artificially generated images can fill in gaps in the training data, especially for rare or 

complex surveillance scenarios. The result of these methodologies is the creation of more versatile and 

robust computer vision models that can effectively detect and classify drones in a wide range of real-

world scenarios (Sonkar et al. 2023; Xu et al. 2022). T he use of color transformations and generative 

data augmentation techniques has significantly enhanced the robustness of drone detection models, 

enabling them to perform reliably under diverse environmental conditions. These advancements have 

laid the groundwork for more sophisticated approaches in UAV detection. The integration of deep 

learning techniques, particularly CNNs and GANs, has further revolutionized this field, providing 

unparalleled accuracy and efficiency in detecting and classifying UAVs.

 Advancements in Deep Learning for UAV Detection

 Image segmentation identifies each pixel in an image and classifies it as belonging to an object. This 

method provides accurate object boundaries and the ability to distinguish between objects with 

overlapping contours but requires high computational resources and is prone to errors under complex 

imaging conditions (Ferreira et al. 2020). To summarize, the choice of object detection method depends 

on the specific task, accuracy and speed requirements, and available computational resources (Table 3).



Drone detection and classification methods using computer vision, machine learning, and deep learning 

have different approaches and features. An important technology is image segmentation, which allows 

you to identify each pixel of an image and classify it as part of a specific object. This method provides 

accurate object boundaries and the ability to distinguish between objects with overlapping contours, but 

it requires significant computing resources and is prone to errors in difficult shooting conditions (Luo et 

al. 2023; Terven et al. 2023). T he use of deep learning and neural networks has become one of the most 

effective approaches in modern computer vision technology. Deep learning allows you to create 

complex neural networks that can automatically extract features from images and learn from large 

amounts of data. The most common approach to detecting UAVs is to use CNNs. Such networks can 

process images efficiently and accurately, identifying the characteristic features of objects (Tian et al. 

2020b). Neural network architectures such as Faster R-CNN, YOLO, SSD, and Mask R-CNN are 

actively used to detect UAVs in images. These models are able to work in real-time and provide high 

accuracy of object detection even in the presence of strong background noise or changes in lighting. The 

use of deep learning and neural networks allows for the automation and improvement of airspace 

control, which is especially important in the context of the growing number and diversity of UAVs (Tang 

et al. 2023). Although the paper primarily focuses on classification and detection, it is important to also 

acknowledge the significant advancements in segmentation networks, which are designed specifically 

for tasks requiring pixel-level understanding of images. T hese architectures play a critical role in many 

applications, including medical image analysis, autonomous driving, and scene understanding. Some of 

the most notable segmentation architectures include U-Net, DeepLab, SegNet, Fully Convolutional 

Networks (FCN), and PSPNet (Yu et al. 2023). U-Net is a widely used architecture in medical image 

segmentation. It is characterized by its symmetric encoder-decoder structure, with skip connections 

between corresponding layers in the encoder and decoder. These connections help retain spatial 

information, making U-Net highly effective for precise pixel-level segmentation tasks. Its ability to 

work with relatively small datasets while achieving high performance has made it a popular choice in 

the field of biomedical image analysis. DeepLab is another powerful architecture for semantic 

segmentation, known for its use of atrous convolutions (dilated convolutions), which allow the network 

to capture multi-scale context without losing resolution. DeepLab has undergone several iterations, 

with DeepLabv3+ being one of the most advanced versions, incorporating encoder-decoder structures 

and advanced atrous spatial pyramid pooling (ASPP) to improve segmentation accuracy in complex 

scenarios, such as urban and natural scene segmentation (Vasterling and Meyer 2013).

SegNet is another encoder-decoder network, with a focus on efficient feature extraction and 

segmentation. Unlike U-Net, SegNet employs max-pooling indices in the decoder to improve 

segmentation quality while reducing the computational load. It has been particularly useful in 

applications requiring real-time performance, such as autonomous vehicles and robotic systems. FCNs 
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were among the first architectures to introduce the concept of using fully convolutional layers for 

semantic segmentation. By replacing the fully connected layers of traditional CNNs with convolutional 

layers, FCNs can handle input images of any size and generate pixel-wise predictions. This architecture 

has been foundational in advancing the field of deep learning-based segmentation (Mittal et al. 2020).

 Pyramid Scene Parsing Network (PSPNet) takes a different approach by using pyramid pooling to 

capture context at multiple scales. This multi-scale context helps the network understand global scene 

information, which is essential for accurate segmentation of complex scenes. PSPNet has proven highly 

effective for large-scale scene parsing tasks, including street scene segmentation for autonomous 

driving (Minaee et al. 2022). Although some of the networks discussed, such as YOLO and Faster R-

CNN, can be adapted to segmentation tasks, their concept was developed for object detection and 

classification. These networks focus on defining the boundaries of objects and their categories, rather 

than on the exact definition of each pixel of the image, which is the main task of segmentation. although 

they can be adapted for segmentation, they are not optimal for such tasks compared to networks 

specifically designed for segmentation, such as U-Net or DeepLab.

Adapting drone detection algorithms to specific survey conditions and customer requirements plays a 

key role in ensuring the effective operation of the surveillance and control system. Environmental 

conditions, such as lighting, weather, landscape type, and obstacles, must be taken into account. For 

example, when shooting in low or changing light conditions, detection algorithms must be adapted to 

work more efficiently. However, such adaptations must be accompanied by a rigorous evaluation of 

performance to ensure that the algorithms continue to deliver accurate and reliable results under varying 

conditions. One of the key tools for evaluating the performance of these detection algorithms is the 

confusion matrix. Confusion matrices are widely used to assess classification models, particularly in 

object detection tasks. This tool visually demonstrates how the model classifies objects and helps 

identify types of errors, such as false positives and false negatives. By using confusion matrices, it 

becomes easier to understand whether the model is working correctly in real-world conditions and how 

it can be further optimized to improve results. Below is an example of a confusion matrix and its 

components for drone detection, which highlights its importance as an effective instrument for 

evaluating the accuracy of the model (Samaras et al. 2019; Shaharom and Tahar 2023). Customer 

requirements may vary depending on the specific task and application. In the security sector, a customer 

may be interested in high detection accuracy and speed, while in natural resource monitoring, they may 

be interested in reliability and the ability to work in different climatic conditions. Therefore, algorithms 

must be customized and optimized to meet specific requirements (Macukow 2016; Taha and Shoufan 

2019).

 The types of drones are extremely diverse and are classified according to many parameters. They can 

differ in size – from micro to large devices, in purpose – military, commercial, or entertainment, in 
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configuration – multi-rotor, airplane-type, or hybrid. Drones differ in flight range, payload capacity, and 

type of power plant – electric, gasoline, or hybrid. Thus, adapting UAV detection algorithms to specific 

survey conditions and customer requirements involves considering the environment, customizing them 

for specific tasks, taking into account the characteristics of the objects to be detected, and optimizing the 

use of resources. This ensures efficient and reliable operation of the detection system in various 

conditions and applications.

 Integration of Multi-Sensor Technologies

 Metrics for evaluating the performance of UAV detection algorithms are essential tools for analyzing 

and comparing their effectiveness under different conditions and application scenarios. Accuracy, for 

instance, measures how correctly an algorithm detects UAVs, calculated as the ratio of correctly 

detected aircraft to the total number of objects flagged as UAVs. The higher the accuracy, the fewer the 

false positives. Completeness, on the other hand, assesses how well the algorithm detects all real-world 

UAVs, defined as the ratio of correctly detected UAVs to the total number of UAVs present. A higher 

completeness means fewer Given the importance of these metrics in assessing algorithm performance, 

it is crucial to regularly calibrate and update UAV detection systems to adapt to changing conditions, 

such as varying lighting, weather, and new UAV designs. These updates ensure that detection systems 

remain reliable, accurate, and efficient over time. Looking ahead, the integration of additional 

technologies, such as LIDAR and radar, will play a vital role in enhancing UAV detection capabilities. 

While computer vision algorithms are integral to real-time detection, multi-sensor approaches can 

significantly boost efficiency and reliability. Radar systems, for instance, are invaluable for detecting 

objects at long ranges, even in challenging weather conditions and low visibility. In combination with 

computer vision, radar data provides spatial coordinates and velocity information, improving overall 

system accuracy. LIDAR technology complements these sensors by offering extremely detailed spatial 

information through laser scanning. LIDAR can generate highly accurate three-dimensional maps of 

the terrain, enabling precise detection of UAV shapes, sizes, and positions. This synergy between 

multiple sensors will enhance the robustness and adaptability of UAV detection systems, ensuring 

higher reliability and efficiency in diverse environments (Jiang et al. 2022).

 The F-Score is the harmonic mean between accuracy and completeness. It covers both metrics in a 

single numerical value and provides an overall measure of the algorithm’s performance. The higher the 

F-Score, the better the combination of accuracy and completeness. The detection rate is the time it takes 

for the algorithm to detect aircraft in an image or video stream. This metric is important for tasks where a 

fast response to object detection is required, such as in security systems or airspace monitoring. False 

positives are the number of objects that the algorithm mistakenly flagged as UAVs when in fact they are 

not. This metric is important for evaluating unwanted false positives that can affect the reliability of the 
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detection system. Missed detections are the number of actual UAVs that the algorithm failed to detect. 

This metric is important for assessing detection completeness and evaluating potential gaps in the  T  he 

analysis of these metrics provides a comprehensive evaluation of the performance of the algorithms and 

determines their suitability for specific tasks and application conditions. When comparing different 

drone detection methods and algorithms, it is important to consider their features, advantages, and 

disadvantages (Table 1). This table provides an overview of the main methods and their characteristics, 

which helps make an informed decision about the most appropriate method for a particular aircraft 

detection task. A confusion matrix is a valuable tool for evaluating the performance of classification 

models, particularly in tasks like UAV detection. It provides a clear representation of the model’s 

predictions by categorizing them into four outcomes: true positives (correctly identified UAVs), false 

positives (objects incorrectly identified as UAVs), false negatives (missed UAVs), and true negatives 

(correctly identified non-UAVs). This framework simplifies the explanation of key concepts such as 

model accuracy and error types. The confusion matrix facilitates the calculation of essential metrics like 

sensitivity (the ability to detect all actual UAVs) and specificity (the ability to correctly identify non-

UAVs), offering a comprehensive assessment of the model’s effectiveness in real-world applications 

(Bouguettaya et al. 2022; Kaur et al. 2021). One of the main advantages of modern computer vision 

algorithms is their high detection accuracy. However, accuracy alone may not fully capture the specific 

requirements of critical systems. In addition to accuracy, other key metrics such as recall (sensitivity), 

mean average precision (mAP), mAP50, and the F1-Score are also important, as these metrics provide a 

more comprehensive evaluation of model performance in complex scenarios. These metrics can be 

especially valuable in applications like UAV detection, where balancing detection quality and 

minimizing false positives or false negatives is crucial for system safety, defined here as the ability to 

accurately identify and respond to threats while minimizing errors that could lead to undetected UAVs 

or incorrect actions. Furthermore, in critical systems, it is important to consider uncertainty factors and 

ensure redundancy in the detection process. This redundancy helps maintain safety and operation in the 

event of a detection failure, ensuring more reliable and continuous performance. Another significant 

advantage is the wide range of applications of computer vision technology. It can be used not only for 

UAV detection for security purposes but also in environmental monitoring, area protection, and in the 

aviation and transport industries to detect and track vehicles. However, besides the advantages, there are 

some disadvantages to applying computer vision for UAV detection (Iqbal et al. 2024; Kakaletsis et al. 

2021). These may include the need for high computational resources,  Pyramid Scene Parsing Network 

(PSPNet) takes a different approach by using pyramid pooling to capture context at multiple scales. This 

multi-scale context helps the network understand global scene information, which is essential for 

accurate segmentation of complex scenes. PSPNet has proven highly effective for large-scale scene 

parsing tasks, including street scene segmentation for autonomous driving (Minaee et al. 2022). 
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Although some of the networks discussed, such as YOLO and Faster R-CNN, can be adapted to 

segmentation tasks, their basic concept was developed for object detection and classification. These 

networks focus on defining the boundaries of objects and their categories, rather than on the exact 

definition of each pixel of the image, which is the main task of segmentation. Therefore, although they 

can be adapted for segmentation, they are not optimal for such tasks compared to networks specifically 

designed for segmentation, such as U-Net or DeepLab.  the dependency on environmental conditions 

such as lighting and weather, and the potential for false positives or negatives in complex scenarios. 

Addressing these challenges is crucial for the effective deployment of computer vision systems in real-

world applications (Kouvaras and Petropoulos 2024).

 Some computer vision methods, especially those based on deep learning, require significant 

computational resources for training and inference. This may require the use of powerful computing 

systems and infrastructure (Poplavskyi 2024). In addition, computer vision methods may be sensitive to 

imaging conditions such as changes in lighting, weather conditions, and other environmental factors. 

This can degrade the performance of algorithms under uncontrolled conditions, requiring additional 

efforts to adapt and optimize the methods for different imaging scenarios.

 It is also worth noting that to maintain the effectiveness of the aircraft detection system, the computer 

vision algorithms must be calibrated and updated regularly to meet changing conditions and task 

requirements. This requires additional time and resources to maintain and support the system. Overall, 

despite some limitations, the application of computer vision for commercial UAV detection is an 

effective and promising approach that can significantly improve safety and efficiency in various 

applications. T he prospects for further research in the application of computer vision for commercial 

UAV detection are promising and offer significant benefits in various aspects. One of the key areas of 

focus in this area is to continuously improve the accuracy and reliability of detection algorithms. The 

development of new computer vision techniques and the improvement of existing ones will lead to more 

accurate results, which is essential to ensure the safety and efficiency of the detection system.

 The integration of LIDAR into drone detection systems provides unique advantages that dramatically 

increase the efficiency of airspace monitoring. LIDAR provides extremely precise three-dimensional 

spatial information, allowing for the instantaneous determination of geometric parameters of drones 

with millimeter accuracy. Unlike traditional optical systems, LIDAR technology can clearly identify the 

shape, size, and spatial orientation of unmanned vehicles even in difficult environmental conditions. 

The key advantage of the integration approach is the ability to detect drones in conditions where 

traditional technologies are ineffective. T his is especially relevant for ensuring the security of critical 

infrastructure, airports, sensitive facilities, and mass events where the most complete control of the 

airspace is required (Poplavskyi 2024).



Infrared sensors are vital components in UAV detection systems, as they enable effective monitoring in 

low visibility conditions such as at night or during poor lighting. These sensors operate by detecting 

thermal radiation, allowing objects to be identified based on their temperature differences from the 

surrounding environment. Infrared sensors are especially valuable for detecting drones in challenging 

weather conditions, such as fog, rain, or snow, where traditional optical cameras may struggle to provide 

clear images. T he integration of infrared sensors with other sensor types, such as video cameras and 

radars, creates more versatile and reliable drone detection systems, significantly enhancing both 

accuracy and detection efficiency in a variety of environmental conditions (Chen et al. 2023). Infrared 

sensors contribute additional data that complements other sensor outputs, enabling more detailed and 

real-time observation of objects. T he advantages of infrared sensors lie in their ability to detect objects 

in conditions where optical sensors are ineffective, such as low-light or in difficult weather. They also 

offer a non-intrusive method for detecting drones, which is crucial for maintaining security without 

disrupting the surrounding environment (Du et al. 2022). Infrared sensors are highly effective for 

continuous monitoring and can operate autonomously in real-time, making them crucial for 

applications such as critical infrastructure protection, security monitoring, and airspace control. Their 

importance in providing redundancy in detection systems, where reliability and safety are paramount, 

cannot be overstated. Overall, further research in this area will focus on the development of more 

accurate, faster, and more reliable UAV detection systems to enable their effective use in various fields 

such as security, monitoring and control, and in the transport industry. Summarizing the research on the 

application of computer vision to commercial UAV detection, several important conclusions and 

generalizations can be drawn. T he integration of computer vision with other sensory data, such as radar 

and infrared sensors, plays a crucial role in enhancing detection systems. By combining these 

technologies, we can achieve more complete and efficient systems capable of operating effectively in a 

variety of environments and scenarios. This multi-sensor approach is essential not only for improving 

detection accuracy but also for adapting to challenging and changing conditions.

 The future of real-time UAV detection systems lies in further advancing these technologies. A key focus 

of this development will be to optimize computer vision algorithms to ensure the fastest and most 

accurate detection of UAVs, even in highly dynamic and complex environments. The goal is to create 

intelligent systems capable of instantaneously recognizing and classifying drones. However, the 

development of such systems is not limited to computer vision alone. The integration of computer vision 

with other technologies, such as radar, acoustic, and thermal imaging systems, is vital for increasing 

detection reliability and minimizing recognition errors. This approach will allow for more robust and 

efficient UAV detection systems that can operate in a broader range of conditions.

 One such technology that promises to significantly improve UAV detection is LIDAR. By combining 

LIDAR with other sensors like radar, LIDAR offers extremely detailed spatial information, enabling the 
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precise detection of UAVs even in conditions where optical cameras and traditional detection methods 

may fail. Radar, for example, has already demonstrated its ability to detect drones at long distances, 

even in poor visibility conditions such as fog or rain, where optical sensors struggle. This data fusion 

approach, which integrates radar, LIDAR, and infrared cameras, is poised to enhance the effectiveness 

of UAV detection systems, ensuring they are both accurate and reliable across a variety of operational 

scenarios.

 Practical results show that combined systems using radar, LIDAR, and infrared sensors achieve much 

better outcomes compared to using a single sensor. For example, one system that integrated these 

technologies demonstrated a 95% detection accuracy while simultaneously reducing false positives to 

5%, which significantly surpasses the results of individual sensors (Du et al. 2022; Poplavskyi 2024). 

This highlights the importance of integrating data from different sensors to achieve high accuracy and 

reliability in the system. Data fusion compensates for the weaknesses of individual sensors: radar works 

well in poor visibility but does not provide detailed characteristics of objects, while LIDAR and infrared 

cameras offer additional capabilities for precise detection under various conditions. The use of neural 

networks to process fused data enables real-time drone detection, which is crucial for rapid response in 

complex scenarios.

 Experimental and practical results confirm the effectiveness of data fusion methods from different 

sensors in creating reliable drone detection systems. They demonstrate significant advantages over the 

use of individual sensors, particularly in improving accuracy, reducing false positives, and enhancing 

operational efficiency in challenging conditions.

DISCUSSION

 The results of this study confirm the significance of using computer vision to detect commercial drones 

to improve safety and efficiency in various applications. The study determined that the use of advanced 

computer vision techniques can provide high detection accuracy and system reliability. Similar findings 

are obtained in studies conducted by other researchers dealing with similar topics. For instance, the 

study by Akbari et al. (2021) on the application of computer vision to analyze videos and images 

captured by drones highlights the importance of using technology to improve UAV functionality and 

safety. However, the results of this study are peculiar due to the focus on a specific application area – 

UAV detection. While the study by the researchers covers a wide range of applications of data from 

drones, the analysis focuses on the specific task of object detection. T hus, while both studies support the 

importance of using computer vision to improve safety and efficiency in the aviation industry, the 

results of this study add value by drawing attention to specific aspects of the application of this 

technology in UAV detection. A study conducted by Kakaletsis et al. (2021) and this study share similar 

aspects in that they both address safety issues in the context of drone use and recognize the importance 
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of integrating safety knowledge into drone algorithms and architectures. Both studies also consider the 

role of computer vision in improving the safety and efficiency of drone use. However, while the study by 

the researchers focuses on analyzing the increasing use of autonomous drones and the importance of 

legal regulation in area, the study written above focuses on analyzing and optimizing computer vision 

techniques for detecting commercial to improve safety and control their use in various industries.

 Chelluri and Manjunathachari (2019) and Mittal et al. (2020) reviewed state-of-the-art object detection 

algorithms and their applicability to low-altitude drone data. The main objective of this study is to 

survey and analyze algorithms such as Faster R-CNN,YOLO, SSD, and RetinaNet and their 

applicability to specific low-altitude data. In contrast, this study focuses on the analysis and 

optimization of computer vision techniques for the detection of commercial UAVs in various industries. 

This study seeks to develop more efficient and robust UAV detection systems, making them more 

applicable and practical in various fields of endeavor. The approach in the study not only considers 

existing algorithms but also proposes adaptation and optimization of these methods to suit specific 

needs and survey conditions. Thus, unlike the study by the researchers, which concentrates on algorithm 

review, this study aims to provide applicable solutions for UAV detection in real-world environments. 

Perry and Guo (2021) present a new remote sensing approach to measure the dynamic displacement of 

three-dimensional structures using a sensor system on UAVs and optical and infrared cameras. This 

research significantly contributes by the integration of different types of cameras to measure three-

component displacement and the development of new data 

processing algorithms to extract information from video. Its performance has been validated by 

laboratory experiments, indicating its potential relevance in the field of measuring the dynamic 

structural response of three-dimensional structures. Both studies highlight the need for further research 

and innovation in commercial UAV detection. However, the researchers focus on the development of a 

new sensing method using optical and infrared cameras on UAVs, while this study offers general 

conclusions and recommendations for improving UAV detection systems, including computer vision 

algorithms, integration of data from different sensors, and system security. A study by Ramachandran 

and Sangaiah (2021) and this study highlight the role of computer vision in the context of UAVs and its 

application to real-time object detection and tracking. Both studies emphasize the importance of these 

tasks for monitoring different environments and identifying gaps in existing research, which helps to 

identify directions for future research. The methodology of both studies includes a detailed literature 

review on object detection and tracking using UAVs and the development of methods to detect objects in 

UAV images. Both studies also enumerate specific datasets for these tasks and summarize existing 

research work in different UAV applications. However, the study of the researchers is more focused on 

the literature review and classification of object detection methods in UAV images, while this study is 

more specifically focused on analyzing the performance of UAV detection methods and their suitability 
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for specific tasks and applications. Thus, although both studies address similar topics, they have 

different biases and approaches to analyzing the issues under investigation. T his study focuses on 

analyzing the findings and recommendations for improving UAV detection systems. It notes that to 

improve the performance and reliability of such systems, improvements in computer vision algorithms 

and integration of data from different sensors such as radar, LIDAR, and infrared sensors are needed. It 

also emphasizes the importance of real-time operation and highlights the potential threats and risks 

associated with the use of such systems, which requires further research in cybersecurity and data 

protection.

 CONCLUSION

The study highlighted the significant benefits of using computer vision to detect drones, including its 

ability to provide high accuracy and rapid response to threats. This is an important aspect of the work, as 

it emphasizes the importance of the system’s operational effectiveness in detecting and responding to 

potential threats in real-time. Computer vision for drone detection not only ensures high accuracy in 

UAV identification, but also guarantees a quick response, which is critical for applications that require 

immediate action, such as security and surveillance. In the context of the study, high accuracy is only 

one of the key metrics used to evaluate the effectiveness of drone detection systems. While accuracy 

plays a crucial role, other performance metrics such as recall, precision, and F1-Score are equally 

important and should be considered when assessing the overall performance of the system. These 

metrics have been discussed throughout the study, providing a more complete understanding of the 

system’s capabilities beyond simple accuracy. It is important to emphasize the importance of these 

additional metrics as they help to provide a complete picture of the strengths and weaknesses of the 

detection system. 

The study has determined that deep learning architectures, particularly deep CNNs, play a central role in 

solving UAV detection tasks. This terminology aligns with the specific usage in the paper, where deep 

CNNs are highlighted for their ability 

to automatically extract hierarchical features from visual data, significantly enhancing the accuracy and 

reliability of detection systems. These architectures are especially effective in challenging conditions, 

such as varying lighting, poor visibility, or different background obstacles, making them essential for 

robust and adaptive UAV detection systems. Data fusion involves not only integrating diverse inputs 

into a model for classification and detection but also combining the results and methods used during the 

detection process. This means that fusion can occur at different stages, from pre-processing, where 

different types of data can be combined to create a more comprehensive view, to combining the output 

from multiple models after processing. In addition, fusion can include the integration of different 

detection methods, allowing the strengths of each method to be combined to achieve more accurate and 
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reliable results. Deep learning, particularly CNNs, has greatly improved the efficiency of processing 

large volumes of data and enabled the implementation of more complex and adaptive UAV detection 

methods. This confirms the importance of such technologies for achieving high results in real-time, 

particularly through integration with other sensors such as radar and LIDAR. At the same time, despite 

their numerous advantages, the use of deep networks requires significant computational resources, 

which must be considered when developing real-world detection systems.

 The importance of adapting UAV detection algorithms to specific survey conditions and customer 

requirements such as lighting, weather, landscape type, and object specificity was emphasized. It is 

necessary to consider the different needs of customers and optimize the algorithms to meet their 

requirements. It was also found that to maintain the effectiveness of the drone detection system, it is 

important to regularly calibrate and update the computer vision algorithms according to changing 

conditions and task requirements. This may require additional time and resources, but it is necessary to 

ensure reliable system performance. The application of computer vision to the detection of commercial 

UAVs promises to be an effective and promising approach that can significantly improve safety and 

efficiency in a variety of applications. The development of new methods and the improvement of 

existing methods will enable more accurate results to be achieved. T he visual detectability of UAVs at 

different altitudes and distances is described, considering factors such as size, shape, color scheme, 

lighting, and environmental background. The study reveals the future of real-time UAV detection 

systems and suggests a direction for further research: improving the adaptability of detection systems to 

different imaging conditions, including lighting, climatic zones, and UAV movement scenarios. This 

direction will develop more efficient and robust detection systems, contributing to the safety and 

efficiency of UAV applications in various fields. Further research in these areas can lead to more 

efficient and reliable UAV detection systems, which in turn contributes to improved safety and 

efficiency in various UAV applications.
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