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Wireless Network Coding on Image Processing and its Major
Applications: A Study

SheilyVerma', Dr. Rashi Agarwal’
Department of Computer Science & Engineering
"“Shri Venkateshwara University, Gajraula (Uttar Pradesh)

ABSTRACT

( A

This research gives a general depiction of how researchers utilized the essential idea of network coding in

a few potential approaches to improve the performance of wireless networks. The parameters of
performance, delay, bundle conveyance report, jitter, and so forth. Wireless networks are framed when
gadgets associate with different gadgets through electromagnetic energy noticeable all around and start
their communication utilizing radio waves. These networks can be grouped into networks dependent on
infrastructures and specially appointed networks. Infrastructure-put together networks depend with
respect to an access point for every one of their communications, while specially appointed networks are
self-sorted out networks.A wireless sensor network (WSN) incorporates base stations and some wireless
sensors (nodes). The WSNs are extraordinarily assigned networks (wireless nodes that self-sort out in an
infrastructure without a network). Wireless sensor networks are commonly relevant to numerous cutting-
edge military or mechanical applications, including normal checking, perception, challenge observing
orwellbeing checking.

1. OVERVIEW

In the execution of the utilizations of the wireless sensor network of the factory, the utilization of energy
is the most key factor, since the nodes of the sensors have an amazingly constrained hold of energy and
are important to operate independently. His primary idea relies upon the dispersion of the remaining task
at hand of processing wavelet changes between various nodes. Two strategies for data exchanging have
been proposed. Along these lines, broad research has concentrated on the most able technique to
constrain energy use and broaden the helpful existence of the network. In this procedure, we consider
the data dissemination plan proposed utilizing LS 9/7DWT[ 1].
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Figure 1: Sensor Network Architecture
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Itis believed that a routing algorithm is configured and that the nodes organize themselves in a two-level
design. The research shows that SS is the only algorithm that presents the energy funds in the absence of
pressure, which allows a decrease in power of about 29% of the proposed mechanism [2]. This father-
young relationship is made to reinforce SPIHT fragilities in case of transmission of bit errors.

The pressure of the circulated image is taken into consideration for the images captured by the sensor
nodes that have fields of vision. The approach uses a strategy such as the pressure of the stereo image to
distinguish coverage in the images of adjacent sensor nodes. The image is the most important vector
between the intercommunication of information in people's lives and the most important media that
contain information.

2. IMAGE PROCESSING

Image processing is a technique for changing an image into a computerized structure and playing out
certain tasks on it, considering a definitive objective of acquiring an improved image or expelling some
significant data from it. It is a kind of banner harmony where the info is an image, like the edge of the
video or photograph and the performance can be the image or characteristics identified with that image.
As a rule, the image processing system fuses images as two-dimensional signs by applying
authoritatively settled banner processing techniques. Today it is one of the most quickly advancing
technologies, with its applications in various pieces of an organization. The image processing systems
center the research region inside the development and data trains.
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Figure 2: Image processing

The two kinds of strategies utilized for image processing are simple and digital image processing.
Straightforward or visual image processing systems can be used for printed adaptations, for example,
prints and photos. Image specialists utilize a few fundamental elements of explanation while utilizing
these visual strategies. Image processing isn't just constrained to a district that should be inspected, in
any case, in the analyst's information. The alliance is another essential device in image processing
through visual systems. Hence, researchers apply a mix of individual information and assurance the data
for image processing. The digital processing techniques help in the control of digital images by means of

EP Journal on Digital Signal Processing (Volume- 09, Issue - 02, May - August 2025) Page No. 2



C. Since the crude data from the satellite arena image sensors contain insufficiencies. To beat these
deformities and get data innovativeness, it is important to try different things with various processing
periods. The three general advances that must be confirmed by a wide scope of data when utilizing a
digital system are the pre-processing, refreshing and data extraction.

3. IMAGE PROCESSING IN WIRELESS SENSORNETWORKS

Due to the limited lifetime of the battery in each sensor, it is obvious that the reduction of the transmitted
data will increase the energy efficiency and the useful life of the network. However, the most obvious
solution is image compression. The purpose of image compression is to reduce the number of bits
needed to represent the image, eliminating as much as possible spatial and spectral redundancies. In this
research, the transmission scheme of the proposed image is based on the transformation of wavelet
images. The structure of a transformation encoder is illustrated in.

Requirements: small size, high number, tether-less and low cost. The small size involves a small battery.
Low cost and energy involve low power CPUs, radios with minimum bandwidth and range. The ad hoc
implementation does not imply maintenance or replacement of the battery. To increase the useful life of
the network, no raw data is transmitted.

".“HEI- PUBRA = Quantization = Entropy encoding o
Image Transform . image
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Figure 3: Functional Block Diagram of Jpeg 2000 Encoder

* AD HOC Wireless Networks

A large number of static or mobile self-classified nodes that are arbitrarily transmitted Communication
with the nearest neighbour Wireless connections the connections are delicate and potentially
unbalanced. The network is based on power and fades levels. The impedance is high for omnidirectional
antennas. Sensor networks and sensor and actuator networks are a visible case.

e System Model

Consider a network of wireless multi-jump sensors that wirelessly interconnect sensor nodes prepared
to recover and deal with a still image. The records, wherein the odd ones were discovered, including
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instances of information data, were at first spared toward the start of the calculation. In this research, no
extra memory is required at any stage. For every model pixel, the low pass rot requires 8 turns (S) and 8
stage instructions (A), while the high advance requires 2 moves and 4 augmentations. The energy
required for low pass/high pass rots can be described by the number of activities. The total calculation
energy for this system can be prepared as the arrangement of the calculation load and the access to the
data. Two degrees of waveletrot are utilized.

4. NETWORK CODING FORWIRELESSAPPLICATIONS

Network Coding (NC) is a generally ongoing subset of network information theory that has prompted
incredible advancement in enhancing network performance. It includes performing activities other than
simply sending and replication in the nodes that make up a network. In this research, we attempt to
inspect the developments in this field and look at the effect this has had on wireless networks, as far as
the improvements it has made and the resulting application to different classes inside the wireless
network.

Consider the theory behind NC, the different NC schemes that have been proposed and utilized
throughout the years, the development of the NC application in the physical layer of networks and a few
chose NC applications in wireless networks. This section endeavors to investigate the idea of network
coding (NC), a moderately new subset of information theory, explicitly inside the space of wireless
networks. Before the fundamental Section that depicts this field, the transmission of data through a
network was seen basically as a progression of products, which is a trade of products without the
capacity to process the products themselves.

Network coding changed this, recommending more muddled activities than essentially reproducing and
transmitting data parcels could be performed on the nodes that make up a given network. This has
prompted quick progress and has animated the utilization of new numerical apparatuses, in fields, for
example, polynomial math, matroid theory, geometry, chart theory, combinatorial theory, and
improvement, among others. Even though NC is a muddled theme to talk about without a critical
numerical foundation, this research goes for a progressively casual crowd and, in this research, we will
take measures to lessen the intricacy of the examined scientific theory, while simultaneously attempting
to catch the different interior subtleties. In this presentation, we will likely offer a concise portrayal of
what NC includes, and consequently explain the various highlights that characterize this innovation. To
accomplish this, we give some information on the NC and its basic theory in this research, talk about the
mainstream coding schemes right now being used in the Section and quickly investigate the network
encoding dependent on the physical layer in the Section, concentrating on Network Encoding physics
(PNC), asitis progressively utilized in wireless networks.

e Theory Behind Network Coding

The consequences of this research are communicated as the hypothesis of the most extreme cut of the
base stream in the theory of the network. This hypothesis expresses that in a stream network, where
information streams starting with one node then onto the next, the most extreme measure of stream from
the source to the sink (greatest stream) is equivalent to the base limit that would not enable any stream to
go from the source-sink when it is cut/expelled from the net with a particular goal in mind (least cut). [3]
Demonstrated that when operations were permitted in moderate nodes, the most extreme multicast
speed was equivalent to the base sliced from the source to every beneficiary essentially, if every one of
the collectors have a similar least cut from the source, NC will enable all nodes to at the same time arrive
atthe base cutting limit.
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Figure 5: Modified wireless butterfly network

In this model, node 5 will get both A and A + B, from which it can decode B by subtracting these two
qualities. Node 6 would utilize a similar technique to decode An in the wake of accepting both B and A +
B. From this simple model; we can see that few other coding techniques could be connected to a variable
number of bundles, in different network configurations.

The wireless network butterflies modified as shown in Figure 5 is different from the network to the
original butterfly in the sense that the packet transmissions may be transmitted from the source node to
more than one node. Therefore, transmissions are represented using hyperc arcs, rather than arcs. We
now have a briefand hopefully overview of the underlying theory and the nature of network coding.
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* Network Coding Schemes

The way nodes code and decode the packets they transmit / receive can have a big impact on the
resulting network performance. Most of the NC schemes in use today are based on algebraic theory.
While the previous schemes, such as the traditional XOR coding scheme and the deterministic linear
network coding scheme were deterministic in nature, the most common schemes in use today are not
deterministic, which means that they are free from the constraint of having feedback information on
packages for every package sent by all receivers. In this research we will see some common coding
schemes, namely Random Linear Network Coding (RLNC), Triangular Network Coding (TNC) and
Opportunistic Network Coding (ONC).

* Random Linear Network Coding

Here, once again, we will use a network model for a general communication system consisting of
sources, network nodes and sinks connected by channels that could have losses. We can represent a
system of this type as a directed graph G = {V, E} where the vertices V represent the different nodes of
the network and the set of edges E consists of arcs between the nodes and denotes the connections in the
network [4]

* Triangular Network Coding

In order to intrinsically resolve the problem with RLNC described above, where the receivers that
obtain an insufficient number of packets cannot recover the original packets, the triangular network
coding has been proposed in [5]. The package coding scheme based on triangular schemes is performed
in two phases. Thus, the packets are coded bit by bit, in which the bits of "0" are added in such a way as to
generate a triangular model, known as triangulation, as shown in Figure 6.
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Figure 6: Triangular Pattern

* Opportunistic Network Coding

In ONC, tracking nodes can browse all nearby transmissions and store the data packets listened to,
regardless of whether they are for them ornot [6]. As such, the sensor nodes know the packets listened to
and routed by each neighbouring node and can perform network coding operations based on this
information.

5. APPLICATIONS OFNC TO WIRELESS NETWORKS
It is unlikely that the incorporation of network coding in the physical layer will be practical in the near
future, for a variety of reasons detailed in [ 7]. However, it is quite feasible to build a network coding in
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overlapping networks. In overlapping networks, nodes are applications that run on computers and edges
are the transport level connections between computers. Overlapping networks can be based on
infrastructure, as shown by content distribution networks such as Akamai.

* Filedownload

Downloading files from a server to a client computer is one of the most common tasks that occur in
network communication. While the downloaded file is traditionally unicast from the server to the client,
if we ignore the delay, this can also be seen as a multicast of the file from the server to a large group of
clients using a proportionally large amount of buffering.

* Videoon Demand, Live Media Broadcast, and Instant Messaging (IM)

Video on demand can be considered a specialized way to download files in which the parts of the
downloaded file should arrive in order and should be decoded almost in real time, taking into account a
small delay. The network encoding can be applied in this case by dividing the file into fragments, which
can be downloaded sequentially. A similar technique can be used with live media streaming.

* Wireless Mesh Networks

In addition to an application layer overlay network, another convenient place where network encryption
can be applied is a link-level network, such as a wireless mesh network. Mesh networks consist of mesh
routers, which provide access to an existing infrastructure and mesh client, which provide multiple hop
connectivity to mesh routers and use the connectivity provided by other client meshes.

* Network Coding Meets Multimedia

Although each node in the network transmits only messages in a traditional communication system, the
recent network coding (NC) paradigm proposes to implement a simple network processing with
combinations of packets in the nodes. NC extends the concept of "encoding" of a message beyond the
encoding of the source (for compression) and encoding of the channel (for protection against errors and
losses). It has been shown to increase network performance compared to the implementation of
traditional networks, reduce the delay and provide robustness to transmission errors and network
dynamics.

6. CONCLUSION

Wireless sensor networks (WSN) have drawn the attention of the research community over the most
recent couple of years, driven by an abundance of hypothetical and pragmatic difficulties. This
developing interest can be to a great extent credited to new applications empowered by vast scale
networks of little devices equipped for collecting information from the physical environment,
performing simple processing on the extricated data and transmitting it to remote locations. Critical
outcomes around there over the most recent couple of years have introduced a flood of common and
military applications. Starting today, most conveyed wireless sensor networks measure scalar physical
wonders like temperature, pressure, stickiness, or location of items.

We examined in this research, we consider wireless sensor networks, in which very small sensors can be
extended to surfaces and can collect energy from the environment, to form detection surfaces through a
network of integrated communication. The sensor nodes are generally equipped with a radio
transceiver, a microcontroller, a memory unit and a set of transducers with which they can acquire and
process data. To reduce the size of each node and the power requirements, the transceiver oscillator is
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replaced by a resonant circuit on the chip. However, the central frequency of the resonant circuit is
random, which means that each node chooses a random channel to transmit and another random channel
to receive. Nodes can self-organize to form a multi-hop network and transmit data to a receiving
node.The performance between any two nodes is constant if only routing is used, but grows linearly in
the number of channels if the network coding is used and the radio frequency intervals are chosen
optimally. The reason network coding is of great help here is that randomly combined packets can find
their way to the destination without the need to explicitly inform the nodes where their destinations are
located.
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ABSTRACT

4 2\

The theory of Graphs is an important branch of Mathematics that was developed exponentially. Dominat-

ion in graphs is rapidly growing area of research in graph theory today. It has been studied extensively
and finds applications to various branches of Science & Technology.

Interval graphs have drawn the attention of many researchers for over 40 years. They form a special class
of graphs with many interesting properties and revealed their practical relevance for modeling problems

arising in the real world.

In this paper a study of signed Roman domination in an interval graph with consecutive cliques of size 3 is

carried out.

Keywords: Signed Roman dominating function, Signed Roman domination number, Interval family,
Interval graph.

Mathematical Subject Classification: 05C69.

- J/

1. INTRODUCTION
The major development of graph theory has occurred in recent years and inspired to a larger degree and
it has become the source of interest to many researchers due to its applications to various branches of
Science & Technology.

Domination in graphs introduced by Ore [11] and Berge [3] has become an emerging area of research in
graph theory today. Many graph theorists, Allan, R.B. and Laskar, R.[2], Cockayne and Hedetniemi [4,
5] and others have contributed significantly to the theory of dominating sets, domination numbers and
other related topics. Haynes et al. [7, 8] presented a survey of articles in the wide field of domination in
graphs.

Recently, dominating functions in domination theory have received much attention. A purely graph —
theoretic motivation is given by the fact that the dominating function problem can be seen, in a clear
sense, as a proper generalization of the classical domination problem. Similarly edge dominating
functions are also studied extensively.

Let (V, E) be a graph. A subset D of V 1s said to be a dominating set of & if every

vertex in V — D 1s adjacent to a vertex in D. The mimimum cardinality of a dominating set

1s called the domination number and 1s denoted by ().
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We consider finite graphs without loops and multiple edges.

2. SIGNED ROMAN DOMINATING FUNCTION

The concept of Signed dominating function was introduced by Dunbar et al. [6]. There is a variety of
possible applications for this variation of domination. By assigning the values —1 or +1 to the vertices of
a graph we can model such things as networks of positive and negative electrical charges, networks of
positive and negative spins of electrons and networks of people or organizations in which global
decisions can be made.

The Roman dominating function of a graph G was defined by Cockayne et.al [5]. The definition of a
Roman dominating function was motivated by an article in Scientific American by lan Stewart [9]
entitled “Defend The Roman Empire!” and suggested by even earlier byReVelle [12]. Domination
number and Roman domination number in an interval graph with consecutive cliques of size 3 are
studied byC. Jaya Subba Reddy, M.Reddappa and B.Maheswari [10].

The concept of signed Roman dominating function was introduced by Ahangar etal. [1]. They presented
various lower and upper bounds on the signed Roman domination number of a graph and characterized
the graphs which have these bounds.The minimal signed Roman dominating functions of corona
product graph of a path with astaris studied by Siva Parvati[13].

Let (V, E) be a graph. A signed Roman dominating function on the graph G 1s a

function f: V — {—1,1,2}, which satisfies the following two conditions:

@ Foreachue?, ) f(v)=1:
\’EN[H]
@ Each vertex u for whichf u = —1 1s adjacent to at least one vertex v for which

jw=21
Thevalue f(7) =>_ f(u) is called as the weight of the function f, and it is denoted by

uev
w(f). The signed Roman domination number of ,denoted by ysz G 1s the minimum
weight of a signed Roman dominating function ofG.

Each signed Roman dominating function f on G is uniquely determined by the
ordered partitions (V_y, Vq, Vy)of V(G), where Vi={veEV/fv=i}for i =—-1, 12
Thenw f ==V_1+Vi+ 2 V5.

There exists a 1-1 correspondence between the functions f : V — {—1, 1, 2} and

the ordered partitions(V_4, V, V;)ofV. Thus we write f =V_;,V, V.

3.INTERVALGRAPH
Letl= I,,I,13, ... ... ..... I, be an interval family, where each ;1s an interval on
the real line and ;= [a;, b;] fori = 1, 2, 3, ... ..... n. Here a; is called the left end point and

b; 1s called the right end poimnt of I . Without loss of generality, we assume that all end
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points of the mtervals in  are distinet numbers between 1 and 2n. Two imtervals i = [a;,
bi] and j = [aj, bj] are said to intersect each other if eithera; < b;or a; < b;. The intervals are
labelled 1n the increasing order of their right end points.

Let G V, E be a graph. G i1s called an interval graph if there 1s a 1-1
correspondence between V and I such that two vertices of G are joined by an edge in E if
and only if their corresponding intervals in I intersect. If i 1s an interval in I the

corresponding vertex in G 1s denoted by v.

Consider the following interval family.

I Is
i @ 2 ¢
Iy
*— @ @
L Is
® e o ®
The corresponding interval graph is
Vi
V2
Vs
V3
Vs
V4
Interval graph

In what follows we consider interval graphs of this type. That is the interval graph which has
consecutive cliques of size 3. We denote this type of interval graph by G.

Thesigned Roman domination is studied in the following for the interval graph G.

4.RESULTS

Theorem 4.1: Let G be the Interval graph with n vertices, where n > 6. Then the signed Roman
domination number of Gis
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YseG=2k+2forn=5k+1.5k+3.5k+5
=2k + 3forn=5k + 2,.5k + 4,

wherek = 1,2,3 .......... respectively.

Proof: Letgbe the interval graph with n vertices, where n = 6.

Let the vertex set of be {v,, v, v3, vy v, }-

Case 1: Supposen =5k + 1, where k=1,2,3 ... ......

Let : V —»{—1,1, 2} and let (V_,, V;, V5) be the ordered partition of V induced by fwhere
Vi={veV/f v= Hori=—1, 1,2. Then there exist a 1-1 correspondence between the
functions f :V —{—1,1,2} and the ordered pairs (V_4,V;, V) of V.Thus we write
f=V_y,Vy,V;.

Eelly —Swe iy B s W L o S
VZ = U3, Vg V13, ee wev vee vee wee o V13, vn—S,l Vp—3, Un.
N E T S —— | S . | S

It was shown in [10] that ¥, 1s a minimumdominating set of §. Further the setV,dominates
V_;. That 1s , every vertex u such that f u = —1 is adjacent to some vertex v with
fvr=2.

Therefore f = V_4, V3, V; becomes a signed Roman dominating function of G.

Now V= 2k, V,=2k +1,V_, = 2k.
Therefore > f(W)=D_f(M+D_ fM+D f(»

vel velly vely

=—2k + 2k + 2k + 2=2 k+2.
Let g = (V' ,V,V') be a signed Roman dominating function ofG. whereV' dominates
—1 1

-1 a B x 2 ’

V' .ThengV = g(v) = g+ g+ g

. -
vel velly velf velh

=—" 4+ ¥V 42V
—1 1 2

Since V, is a minimum dominating setof G. we have V, < V' . This implies thatg V =
—V+V+2V =2—V_+V,+2V,=f(V).

-1 1 2
Therefore (V) is a minimum weightof §. where f(V_4, V4, V) 1s a signed Roman

dominating function .

Thus y; G = 2k + 2.
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Case 2: Supposen =5k + 2, where k=1,2,3 ... ......

Now we proceed as in Casel.

POl Sk [ P C—— B D, | R | IEN .
Vo=13, Vg V13, - ce we s e e U 14, Un—9, Vg U ;
V—l =V Vs UV7p eer ver vve v ey U100 Un—7, Vs, Vp—2.

ClearlyV, 1s a minimumdominating set of §. Here we observe that the setV,dominates V_,.
Therefore f =V _,, V4, V5 1s a signed Roman dominating function of §.
NowV,=2k+1,V,=k+1,V_;=2k.
Therefore > f(") =D f(M+ D f(M+D f(v).

—

velly vel vels

=—2k + 2k + 1 + 2k + 2=2 k+3.
Ifg=(V ,V',V)is asigned Roman dominating function of §. then it follows as in
-1 1 2

Case 1, that (V) is a minimum weightof§ for the Roman dominating function
f V—IJ Vl! VZ a

Thusysz G = 2k + 3.

Case 3: Supposen =5k + 3, where k=1,2,3 ... .......

Now we proceed as in Casel.

el — [ P P el o O o D g W o U
Pt "o T T ST | T T ) e
V—l =V Vs, V7 e vie s vinvwen e, U3y Uy V3, V1 -

We have seen [10], that V5is a minimumdominating set of §. Here we observe that the

setV;dominates V_;.
Therefore f = V_4, V4, V,is a signed Roman dominating function of G.

Now Vy=2k+1,Vo=k+1,V_,=2k+1.
Therefore Zf(r) = Z f(1')+Zf(r)+ Zf(v) :

vel’ vel’y velq vels

=2k —1+2k+1+2k+2=2 k+2.
Ifg=(V,V',V)isasigned Roman dominating function of . then it follows as in
. 1 2

Case 1, that (V) is a minimum weightof§ for the signed Roman dominating function

f V—IJ Vlr VZ 2
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Thusy se = 24+ 2.
Case 4: Suppose 7= 54+ 4. where k= 1,2,3 ... .....
Now we proceed as in Casel.

It P — /s Pe Po i i o Buem Pn-s, B a2 Pt

Vi= Sl O st i B ol

V—} = 35 Pnciiiiiiiinniinnn ) g0, 7, %n—2g, an_z :
Obviously /> is a minimumdominating set of . Here we observe that the set /" >dominates
V_i.

Therefore /= Vo, V1, V> is a signed Roman dominating function of .

Now V;=2£+2,V,=4#+1,V_1 =24+ 1.
Therefore > f(M =D fM+DX fMW+D.F().

vel” velly velh vel;
=—28—1+2£+2+28+2=2 £+3.

If g= V', V', V") is asigned Roman dominating function of &. then it follows as in
-1 1 72

Case 1. that /() is a minimum weightof& for the signed Roman dominating function
FoE .V Fs.

Hence ysv §= 24+ 3.

Case 5: Suppose 7= 54+ 5. where k= 1,2,3 ... ...

Now we proceed as in Casel.

LetV ;i ={¥1, 4,6 wocrnsensessinen- U0, P n—6, ¥4, V-1 };
Vi=0s VsV i B 160 10 Pu-n ¥
Vb= 005 05, 87 e i s s inning P =8, M5, Bm=—a3, ¥

n’

Clearly /> is a minimumdominating set of & and the set/’> dominates / ;.
Therefore /= V' _;, V1, V> is a signed Roman dominating function of . Now
Vi =.7.€"+_7', Vs =.{'+17, V_; =28+ 2.

Ifg= V', V', V') isasigned Roman dominating function of & . then it follows as in
=§ g

Case 1. that /() is a minimum weightof& for the signed Roman dominating function
TP -Vl .

Hence ysp &= 24+ 2.
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Theorem 4.2:Letg& the an interval graph with n vertices, where 2 < 7 < 6.
Theny o &=1 for n=4
= 2for7nz = 3, 5.
Proof: Let& be the interval graph with n vertices, where2 < 7z < 6.
Case 1: Suppose 77= 3. Let 77}, ©>, 3 be the vertices of & .
LetV/V;=v;; jz{ﬂg}LV_fzﬂj‘
Obviously /> 1s a minimumdominating set of , and /> dominates //_;. Therefore

JS=V_;, Vi, VV>is a signed Roman dominating functionof .

And > f(v) = Zf(1)+2f(1)+2f(1

vel” vel vels
=—]+1+2xl=
Thus p e = 2.

Case 2: Suppose 7= 4. Let 7,1, v2, 3, ¥4 be the vertices of . Let

Vi={v:}.V={vs}. V-1=vi,vs.
Clearly /> 1s a minimumdominating set of & and / >dominates /' _;.

Therefore /= V_;, V1, V> is a signed Roman dominating function of .

and - FfO=Z O+ 20+ 6.

vel” velh vels
— ok o ek —

Thus y v &= 1.
Case 3: Suppose 2= 5. Let v;, v, v3, U4, 5 be the vertices of .

LETV}Z{Ug,ﬂj}Z Vo=vi; V_1=v;,vs.
Agam /> 1s a minimumdominating set of & and the set/”>dominates /_;.

Therefore /= V-1, V1, V2 is a signed Roman dominating function of .

Therefore > £(1)=>" f()+ D f(M)+ D f(¥)

vel” velly vel vels
A F 2T I ME=2
Thus =2
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Theorem 4.3:Let &the an interval graph with n vertices . where » = 6. Then

ys# & =y +IHform =54+ 1, 54 + 2, and 54 + 4. where #=

1,2 3, .. .. ..1espectively.
Proof :Let& be the interval graph with n vertices . where n = 6.
Then by [10]. we have
yeGg=2k+2 for n=5k+2,5k+4. where £=1,2,3 ... ... ... ...
=24+ 1, forn=54+ 1, where £=1,2,3 ... ... ... ...
Now by Theorem 4.1, we have
VseG=2k+ 3. forn=5k+2,5k+4, where £#=1,2,3 ... ... ... ...
=2k+2.form=5k+1 where £#=1,2,3 ... cuv cur u.
Forn=54+2,54+4. where #=1,2,3 ... ee ... ...
ysk g =2 +3
=QC+DH)+1=yr & +1
Again for 7= 54+ 1, where #=1,2,3 ... ... ... ...
Vs § =2 +2
— 22D l=pp G +i

Theorem 4. 4: Letgbe the Interval graph with n vertices . where n = 8.Then y 4 &=

y form =5 +3,54& + 5, where £ = 1,2, 3, ccecccrcun. respectively.
Proof :Letg be the interval graph with n vertices , where n = 8.

Suppose 7= 54+ 3.54+ 5,where £=1,2, 3, ... ... ....
Then yw§= 24+ 2and y p &= 24 + 2.(by [10])
Hence y w§=yr &G .

Theorem 4.5:Let & be the interval graph with n vertices . where n = 6. Theny s» =

2y & for=54 + 1,5/ + 3 .54 + 5 .wherex= 1,2,3 .........respectively.

Proof: Let &be the interval graph with n vertices ., where n = 6.

Suppose 7 = 54 + 1,54 + 3,54 + 5 where # = 1,2,3 ........ respectively.
Then by Theorem 4.1, the signed Roman domination number is

=2(£+1)=2 y g (by[10])
Thus v g=2r4.
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5.ILLUSTRATIONS
[lustration 1: n=7

I Is
® e @ ®
I
I4 I
® ®* @ ® @ ®
I Is
— ® © J
Interval family
V1
V7 1
Vo
Vs =
1
V3
Vs
-1
1 Va
Interval graph

D={v; vstand y &= 2.

Vi={vi,vsveV2=v3:,v7 . V_1mvs vy

vel’

Therefore psp 6= 5.

Illustration 2: n=11

S fM=V_. -1+ V. 1+ V;.2==124+13+2(2)=5=/()

Iz Is Iy
I L ® @ ® @ -
: 14 I? Im
. e o P o0 —
I Is Is i
*r——» L ® @ -9 @
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Interval family

Vs Vg4

Interval graph
D={vs vs, vijand y &= 3.

Vi={v,04 060U}, V2=03,08 V1; V-1=0U305 07 V10

DW=V 4.1+ Vi 1+ V,.2=—14+14+23)=6= /()

vel’

Therefore y o4 &= 6.
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ABSTRACT

In this paper, the concept of almost and near compactness on neutrosophic soft topological space have
been introduced along with the investigation of their several characteristics. That's shown that the
neutrosophic soft continuous image of neutrosophic soft almostly compact is neutrosophic soft almostly
compact and it's properties developed here.
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1. INTRODUCTION

After the introduction of the concept of a fuzzy set by Zadeh in his classic paper [1]. C.L.Chang [2] has
defined fuzzy topological spaces. In 1983, Atannasov [3] introduced the notion of intuitionistic fuzzy
sets. Soft sets theory was proposed by Molodtsov [4 ] in 1999, as a new mathematical tool for handling
problems which contain uncertainties. Maji et al [5] gave the first practical application of soft sets in
decision-making problems. Shabir and Naz [6 ] presented soft topological spaces and defined some
concepts of soft sets on this spaces and separation axioms. Moreover, topological structure on fuzzy soft
set was defined by Coker [7 ], Tanay and Kandemir [8 ], Varol and Aygiin [9 ]. Turanli and Es [ 10]
defined compactness in intuitionistic fuzzy soft topological spaces.The concept of neutrosophic
set(NS) was first introduced by Smarandache [ 11,12 ] which is generalization of classical sets, fuzzy set,
intuitionistic fuzzy set etc.The concept of connectedness and compactness on neutrosophic soft
topological space defined by Bera and Mahapatra[13 ].

2. PRELIMINARIES
Hereafter, we recall some necessary definitions and theorems related to neutrosophic soft set,
neutrosophic soft topological space for the sake of completeness.

Definition 2.1.[11] Let X be a space of points (objects), with a generic element in X denoted by x. A
neutrosophic set A is characterized by a truth-member function TA, an indeterminacy-membership
function IA , and a falsity-membership function FA . TA(x), [A(x) and FA(x) are real Standard or non
Standard subsets of ]-0,1+[ .That is TA, IA, FA :X —]-0,1+[ . There is no restriction on the sum of TA(x),
IA(x), FA(x)and so, -0<sup TA(x)+sup [A(x)+ FA(x)<3+.

Definition 2.2. [4] Let U be an initial universe set and E be a set of parameters. Let P(U) denote the
power set of U. Then for AUE, a pair (F,A) is called a soft set over U, where F:A— P(U) is a mapping.

Definition 2.3. [5] Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the set
of neutrosophic sets (NSs) of U. Then for ALE, a pair (F,A) is called a neutrosophic soft set (NSS) over
U, where F:A— NS(U) is a mapping.
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Definition 2.4. [14] Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the
set of neutrosophic sets (NSs) of U. Then, a neutrosophic soft set N over U is a set defined by a set valued
function fNrepresenting a mapping fN:E— NS(U) where fN is called approximate function of the
neutrosophic soft set N. In other words, the neutrosophic soft set is a parametrized family of some
elements of the set NS(U) and therefore it can be written as a set of ordered pairs, N={(e, {<x,Tf N(e)(x),
IfN(e)(x), FIN(e)(x)>:xeU} ):eeE} where TfN(e)(x), [fN(e)(x), FfN(e)(x) €[0,1], respectively the truth-
membership, indeterminacy-membership , falsity-membership function obvios.

Example2.5.[15] Let U={h1,h2,h3} be a set of houses and E={e1(beautiful), e2(wooden), e3(costly)}
be a set of parameters with respect to which the nature of houses are described.

Let

fN(el)={<h1,(0.5,0.6,0.3)>,<h2,(0.4,0.7,0.6)>,<h3,(0.6,0.2,0.3)>};
fN(e2)={<h1,(0.6,0.3,0.5)>,<h2,(0.7,0.4,0.3)>,<h3,(0.8,0.1,0.2)>};
fN(e3)={<h1,(0.7,0.4,0.3)>,<h2,(0.6,0.7,0.2)>,<h3,(0.7,0.2,0.5)>};

Then N={[el, fN(el)], [e2, IN(e2)], [e3, fN(e3)] }isan NSS over (U,E).

Definition 2.6. [14]

1.The complement of a neutrosophic soft set N is denoted by Nc and is defined by Nc={(e, {<x,FfN(e)
(x),1-IfN(e)(x), TfN(e)(x)>:xeU} ):e€E},

2. Let N1 and N2 be two NSSs over the common universe (U,E). Then N1 is said to be the neutrosophic
soft subset of N2 iffor each e€E and for each xeU, TfN1(e)(x)< TfN2(e)(x), If N1(e)(x)>IfN2(e)(x), Ff
Nl1(e)(x)=>FfN2(e)(x).

We write N1ON2 and then N2 is the neutrosophic soft superset of N11.

Definition 2.7.[ 14]

1.Let N1 and N2 be two NSSs over the common universe (U,E). Then their union is denoted by N1 ©
N2=N3 and is defined as:

N3={(e,{<x,TfN3(e)(x), [fN3(e)(x), FFN3(e)(x)>:xeU} ):eeE} where TfN3(e)(x)=TfN1(e)(x)0 Tf
N2(e)(x), IfN3(e)(x)=IfN1(e)(x)* IfN2(e)(x), FfN3(e)(x)= FfN1(e)(X)*Ff N2(e)(x).

2.Their intersection is denoted by N1 N N2=N4 and is defined as:
N4={(e,{<x,TfN4(e)(x), [fN4(e)(x), FFN4(e)(x)>:xeU} ):e€E} where TfN4(e)(x)=TfN1(e)(x)*Tf
N2(e)(x), [fN4(e)(x)=IIN1(e)(x)0 IfN2(e)(x), FfN4(e)(x)= FfN1(e)(x)OFfN2(e)(x).

Definition 2.8. [13]
1. Let M and N be two NSSs over the common universe (U,E). Then M-N may be defined as, for each

ecE and for each xeU,
M-N={<x,TfM(e)(x)*F{N (e)(x), [fM(e)(x)0(1-IfN (e)(x)), FfM(e)(x) OTfN(e)(x) > };

2. Aneutrosophic softset Nover(U,E) is saidto be null neutrosophic soft setif T f
N(e)(x)=0, IfN(e)(x)=1,FfN(e)(x)=1 for each e€E and for each xeU. It is denoted by ¢u.
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A neutrosophic soft set N over (U,E) is said to be absolute neutrosophic soft set if Tt N(e)(x)=1,
IfN(e)(x)=0, FfN(e)(x)=0 for each e€E and for each xeU.It is denoted by 1u. Clearly, tuc =1u, luc =tu.

Definition 2.9. [13 ] Let NSS(U,E) be the family of all neutrosophic soft sets over U via parameters in E
and TulNSS(U,E). Then tu is called neutrosophic soft topology on (U,E) if the following conditions are
satisfied.

(1)%u, luetu,

(i1) The intersection of any finite number of members of tu also belongs to Tu.

(i11) The union of any collection of members of tu belongs to tu.

Then the triple (U,E, tu) is called a neutrosophic soft topological space. Every member of tu is called tu-
open neutrosophic soft set. An NSS is called tu-closed iffit’s complement is tu-open.

Definition 2.10. [13] Let (U,E, tu) be a neutrosophic soft topological space over (U,E) and
MeNSS(U,E) be arbitrary. Then the interior of M is denoted by Mo or int(M) and is defined as:
Mo=0{N1: N1 is neutrosophic soft open and N1LUM}.

Definition 2.11.[ 13] Let (U.,E, tu) be a neutrosophic soft topological space over (U,E) and A €
NSS(U,E) be arbitrary. Then the closure of A is denoted by A or cl(A) and is defined as:
A=N{N1:N1 is neutrosophic soft closed and AON1}.

Theorem 2.12. [13 | Let (U,E, tu) be a neutrosophic soft topological space over (U,E) and A €
NSS(U,E). Then, (A)c=(Ac)o and (Ao)c=(Ac).

Proposition 2.13. [13] Let N1 and N2 be two neutrosophic soft sets over (U,E). Then,
(1) (NIuN2)c=NIcNN2c,
(1) (NIN'N2)c=Nl1cuN2c.

Definition 2.14. [13] Let (U,E, Tu) be a neutrosophic soft topological space and Me tu. A family Q={Qi
:iel'} of neutrosophic soft sets is said to be a cover of M if MU Qi.

If every member of that family which covers M is neutrosophic soft open then it is called open cover of
M. A subfamily of Q which also covers M is called a subcover of M.

Definition 2.15. [13] Let (U,E, tu)be a neutrosophic soft topological space and Me tu.Suppose Q2 be an
open cover of M. If Q has a finite subcover which also covers M then M is called neutrosophic soft
compact.

Definition 2.16. [13] Let ¢ : U— V and y :E—E be two functions where E is the parameter set each of
the crisp sets U and V. Then the pair (¢, y) is called an NSS function from (U,E)to (V,E).We write,

(@, v): (U,E) = (V.E).

Definition 2.17. [13] Let (M,E) and (N,E) be two NSSs defined over U and V, respectively and (o, ) be
an NSS function from (U,E) to (V,E). Then,

(1) The image of (M,E) under (¢, y), denoted by (¢, ) (M,E), isan NSS over V and is defined as:

(0, v) MLE)=(o(M),y(E))={ <y(a),fo(M)(y(a))>:acE } where for each be y(E) and yeV.
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max@(x)=y max y (a)=b[Ti(M)(a)(x)], if xe@-1(y),

To(M)(b)(y)={ 0, otherwise.

mine(x)=y min y (a)=b[If(M)(a)(x)], if xeq-1(y), Ip(M)(b)(y)={ 1,
otherwise.

mine(x)=y min y (a)=b[Ff(M)(a)(x)], if xeq-1(y),

Fo(M)(b)(y)={ 1, otherwise.

(2) The pre-image of (N,E) under (¢, ), denoted by (9, v)-1 (N,E), isan NSS over U and is defined by:
(¢, v)-1 (N,E)=(9-1(N),y-1(E)) where for each ae y-1(E) and xeU.

To-1(N)(a)(x)=TN(y())(¢(x)),

Lp-1(N)(2)(x)=IN(y(2))(¢(x)),

Fo-1(N)(@)(x)=FN(y(2))(0(x)).

If y and @ are injective(surjective), then (¢, y) is injective(surjective).

Definition 2.18. [13 ] Let (U,E,tu) and (V,E,1v) be two neutrosophic soft topological spaces. (o, y) :
(U,E,tu) — (V,E,v) is said to be a neutrosophic soft continuous mapping if for each (N,E)e v,
theinverse image(o, y)-1 (N,E)e tui.e., the inverse image of each open NSS in (V,E,1v) is also open in
(U,E,tu).

Theorem 2.19. [13] Let (U,E,tu) and (V,E,tv) be two neutrosophic soft topological spaces. Also let, (¢,
y) : (U,E,tu) — (V.E,1v) be a neutrosophic soft continuous mapping. If (M,E) is neutrosophic soft
compactin (U,E,tu), then (¢, y)(M,E) issoin (V,E,tv).

3. NEUTROSOPHIC SOFTALMOST COMPACTNESSAND NEUTROSOPHIC SOFTNEAR
COMPACTNESS

Here, the Notion of almost compactness and near compactness on neutrosophic soft topological space is
developed with some basic theorems.

Definition 3.1.

(a) A neutrosophic soft topological space (U,E,tu) is called neutrosophic soft almost compact iff every
open cover of (U,E,tu) has a finite subcollection whose closures cover (U,E,tu), or equivalently, every
open cover contains a finite subcollection whose closures form a cover of (U,E,tu).

(b) A neutrosophic soft topological space (U,E,tu) is called neutrosophic soft nearly compact iff every
open cover of (U,E,tu) has a finite subcollection such that the interiors of closures of neutrosophic soft
sets in this subcollection covers (U,E,tu).

Example 3.2. Let U={h1,h2}, E={el,e2} and tu={%u, lu, N1, N2,N3,N4}, where N1, N2,N3,N4
beingneutrosophic soft sets are defined as following:

fN1(el)={<hl1,(1,0,1)>,<h2,(0,0,1)>};

fN1(e2)={<hl1,(0,1,0)>,<h2,(1,0,0)>};

fN2(el1)={<h1,(0,1,0)>,<h2,(1,1,0)>};

fN2(e2)={<hl1,(1,0,1)>,<h2,(0,1,1)>};

fN3(el)={<hl,(1,1,1)>,<h2,(0,1,1)>};

fN3(e2)={<hl1,(0,1,0)>,<h2,(0,1,1)>};

fN4(el)={<hl1,(1,1,0)>,<h2,(1,1,0)>};

fN4(e2)={<hl1,(1,0,0)>,<h2,(0,1,1)>};
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Here N1N N1=NI1,N1MN N2=¢u, NIN N3=N3, N1N N4= N3, N2 N2= N2, N2 N3=¢u, N2 N4=
N2, N3N N3=N3,N3N N4=N3, N2 N4=N4, and N1, N1=N1, N1 N2=%u, N1u, N3=N1, N1,N4=
Tu, N20 N2=N2, N2, N3=N4, N20N4=N4, N3oN3=N3, N3uN4= N4, N4, N4=N4;

Corresponding t-norm and s-norm are defined as a*b=max {a+b-1,0} and abb=min{a+b,1}. Thentuisa
neutrosophic soft topology on (U,E) and so (U,E,tu) is a neutrosophic soft topological space over (U,E)
[13].

The family {N1,N2,N3,N4}is an open cover of (U,E,tu). Since c(N1.N2)=cl(N1uN2)=1u, (U,E,tu) is
neutrosophic soft almost compact topological space. Also,sinceint(cl(N1uN2))=int(cl(N1oN2))=1u,
(U,E,ru) is neutrosophic soft nearly compact topological space.

It is clear that in neutrosophic soft topological spaces we have the following implications: neutrosophic
soft compact— neutrosophic soft nearly compact— neutrosophic soft almost compact.

Theorem 3.3. A neutrosophic soft topological space (U,E,tu) is called neutrosophic soft almost
compact iff each family Q={Qi :i €I} of neutrosophic soft open sets in (U,E,tu) having the finite
intersection property we have Niel cl(Q1)#¢u.

Proof .Let (U,E,ru) be an almost compact neutrosophic soft topological space. Consider Q={Qi :i€l}be
a family of neutrosophic soft open sets in (U,E,tu) having the finite intersection property. Suppose the
Niel cl(Qi)= ¢®u.Then we have Uiel [cl(Qi)]e=Nielint(Qic)= lu. Since (U,E,tu) almost compact
neutrosophic soft topological space, there exists a finite subfamily {Qic :i =1,2,...,n}such thatn
cl(int(Q ¢))= 1. Hence On cl([(Q )]c)=Un [int(cl (Q ))]c= 1 =>N n int(cl(Q ))= ¢ .But from Q =int(Q
)int(cl(Q1)), we see that N n Q = ¢ which in contradiction with the finite intersection property of the
family.

Next assume that (U,E,tu) is not almost compact. Then, a neutrosophic soft open cover of {Qi :1 el},
say,of (U,E,tu) has no finite subcover i.e., in=1 cl (Qi)# lu. Since [cl(Qi)]c=int(Qic), consists of
neutrosophic soft open sets in (U,E,tu) and having the finite intersection property. Then by hypothesis,
Ni=nlcl([cl(Qi)]c) # tu => Uin=1 [cl([cl

(QD)]c)]c# 1u =>0nint(cl (Qi))# lu which is in contradiction with In

Qi=lusince Qillint(cl(Qi)) foreachi=1,2,...,n.

Definition 3.4. A neutrosophic soft set N1 is called a neutrosophic soft regular open set iff
N1=int(cl(N1)); a neutrosophic soft set N2 is called a neutrosophic soft regular closed set iff N2=
cl(int(N2)).

Theorem 3.5.1n a neutrosophic soft topological space (U,E,tu) the following conditions are equivalent:

(D (U,E,ru) is neutrosophic soft almost compact.

(1) For each family Q={Qi :i €l } of neutrosophic soft regular closed sets such that Niel Qi= ¢u,
there exists a finite subfamilyQ1={Qi:1=1,2,...,n} such that N n Qi=¢u.

(111) Nielcl(Q1)# %u holds for each family Q={Qi :1 el}of neutrosophic soft regular open sets
having the finite intersection property.

(iv) Each neutrosophic soft regular opencover of (U,E,tu) contains a finite subfamily whose
closures cover (U,E,tu).
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Proof. The prof of this theorem follows a similar pattern to Theorem 3.3.

Definition 3.6.Let (U,E,tu) and (V,E,tv) be two neutrosophic soft topological spaces. Then (o, ) :
(U,E,tu) — (V.E,tv) is said to be a neutrosophic soft almost continuous mapping if for each (N,E)
neutrosophic soft regular open set of (V,E,tv) , theinverse image(¢, y)-1 (N,E)e tu i.e., the inverse
image of each neutrosophic soft regular open set in (V,E,tv) is neutrosophic soft open in (U, E,tu).

Theorem 3.7. Let (U,E,ru) and (V,E,tv) be two neutrosophic soft topological spaces and (¢, v) :
(U,E,tu) — (V,E,tv) a neutrosophic soft almost continuous surjection mapping. If (MLE) is
neutrosophic soft almost compact in (U,E,tu), then (¢, ) (M,E) is so in (V,E,tv).

Proof. Let {(Ni,E) : i ]} be a neutrosophic soft open cover of (¢, y) (M,E) i.e., (¢, v) (M,E) Olie1(Ni,E).
Since (@, ) is neutrosophic soft almost continuous, {(¢, y)-1int(cl((Ni,E))): i€l }is a neutrosophic soft
open cover of (M,E) . Since (M,E) is almost compact, there exists a finite subcover {(¢, y)-1(Ni,E):
i=1,2,...,n}such that (M,E)00n cl(((p, w)-1(int(cl(N ,E))))=1 Hence (¢, v) (M,E) U(p, y)[ O
n cl( (9, y)-1(int(cl(N ,E))))]= 0 n (o, y)[cl(e, y)-1(int(cI(N ,E))))]=f(1 )=1 . But from int(cI(N ,E ))
Ucl(N ,E) and from the neutrosophic soft almost continuity of f,

(0, W)(cl((p, w)-1int(cl(NLE)))) (@, w)( (9, w)-1 cl(Ni,E)))) Ocl (NL,E) for each i=1,2,...,n, i.e.,Uncl
(N,E)=1.Hence, (9, y) (M,E) is neutrosophic soft almost compact also.

Definition 3.8. Let (U,E,ru) and (V,E,tv) be two neutrosophic soft topological spaces. Then (o, ) :
(U,E,tu) — (V,E,1v) is said to be a neutrosophic soft weakly continuous mapping if for each (N,E)
neutrosophic soft open set of (V,E,tv),

(0, y)-1 (NE)int ((¢, y)-1(cI(N,E))).

Theorem 3.9. Let (U,E,tu) and (V,E,tv) be two neutrosophic soft topological spaces and (o, y) :
(U,E,tu) — (V,E,tv) a neutrosophic soft weakly continuous surjection mapping. If (MLE) is
neutrosophic soft compact in (U,E,tu), then (¢, v) (M,E) is neutrosophic soft almost compact in
(V.E,tv).

Proof. The proofis similar to Theorem 3.7.

Definition 3.10. Let (U,E,tu) and (V,E,tv) be two neutrosophic soft topological spaces. Then (¢, y) :
(U,E,tu) — (V,E,1v) is said to be a neutrosophic soft strongly continuous mapping if for each (M,E)
neutrosophic soft set of (V,E,tv), (¢, y)[cI(M,E)]U(p, v) (M,E).

Theorem 3.9. Let (U,E,tu) and (V,E,tv) be two neutrosophic soft topological spaces and (¢, y) :
(U,E,tu) — (V,E,1v) a neutrosophic soft strongly continuous surjection mapping. If (M,E) is
neutrosophic soft almost compact in (U,E,tu), then (¢, v) (M,E) is neutrosophic soft compact in
(V.E,tv).

Proof. By using a similar technique of the proof of Theorem 3.7, the theorem holds.

Corollary 3.12. Let (U,E,tu) and (V,E,tv) be two neutrosophic soft topological spaces and (o, v) :
(U,E,tu) — (V.E,tv) aneutrosophic soft strongly continuous surjection mapping. If (MLE) is
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neutrosophic soft nearly compact in (U,E,tu), then (¢, v) (M,E) is neutrosophic soft compact in
(V,E,v).

4. CONCLUSION

In this paper, the concepts of Neutrosophic soft topological spaces are introduced and studied. Some
interesting properties are al so established. The results in this work can be extended to the Neutrosophic
connectedness properties.
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ABSTRACT

A graph G is anti-magic if there is a labeling of its edges with 1, 2, . . ., |E| such that the sum of the labels
assigned to edges incident to distinct vertices are different. A conjecture of Hartsfield and Ringel states
that every connected graph different from K2 is anti-magic. Our main result validates this conjecture for
Boolean graph of cycleCn(n>4) is anti-magic.

Keywords : Boolean graph BG(G), Anti-magic Labeling.

INTRODUCTION:
Suppose G = (V, E) is a graph. For each vertexvofGdenoted by E¢ (V), the set of edge of
Gincident to . We shall write(V) for Ec (V) Let f: E = {1,2,...,|E|} be a bijective mapping.
The vertex-sum ¢ (v) at v is defined as ¢f v = ee(v) f(e).For any two distinct vertices u, v of
G.or (V) # @f (W) gives an anti-magic labeling of G. A graph G is called anti- magic if G has an

anti-magic labeling. The problem of anti-magic labeling of graphs was introduced by Hartsfield and

Ringel [4]. They conjectured that all graphs with no single edge component are anti-magic. Graph
Labeling has many applications in coding theory, X - ray crystallography, radar, astronomy, circuit
design, communication network addressing, and data base management .