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Wireless Network Coding on Image Processing and its Major 
Applications: A Study

1 2 SheilyVerma , Dr. Rashi Agarwal
Department of Computer Science & Engineering

1,2Shri Venkateshwara University, Gajraula (Uttar Pradesh)

A B S T R A C T

1. OVERVIEW
In the execution of the utilizations of the wireless sensor network of the factory, the utilization of energy 
is the most key factor, since the nodes of the sensors have an amazingly constrained hold of energy and 
are important to operate independently. His primary idea relies upon the dispersion of the remaining task 
at hand of processing wavelet changes between various nodes. Two strategies for data exchanging have 
been proposed. Along these lines, broad research has concentrated on the most able technique to 
constrain energy use and broaden the helpful existence of the network. In this procedure, we consider 
the data dissemination plan proposed utilizing LS 9/7 DWT[1].

This research gives a general depiction of how researchers utilized the essential idea of network coding in 

a few potential approaches to improve the performance of wireless networks. The parameters of 

performance, delay, bundle conveyance report, jitter, and so forth. Wireless networks are framed when 

gadgets associate with different gadgets through electromagnetic energy noticeable all around and start 

their communication utilizing radio waves.  These networks can be grouped into networks dependent on 

infrastructures and specially appointed networks. Infrastructure-put together networks depend with 

respect to an access point for every one of their communications, while specially appointed networks are 

self-sorted out networks.A wireless sensor network (WSN) incorporates base stations and some wireless 

sensors (nodes). The WSNs are extraordinarily assigned networks (wireless nodes that self-sort out in an 

infrastructure without a network). Wireless sensor networks are commonly relevant to numerous cutting-

edge military or mechanical applications, including normal checking, perception, challenge observing 

or wellbeing checking.
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Figure 1: Sensor Network Architecture



It is believed that a routing algorithm is configured and that the nodes organize themselves in a two-level 
design. The research shows that SS is the only algorithm that presents the energy funds in the absence of 
pressure, which allows a decrease in power of about 29% of the proposed mechanism [2]. This father-
young relationship is made to reinforce SPIHT fragilities in case of transmission of bit errors.

The pressure of the circulated image is taken into consideration for the images captured by the sensor 
nodes that have fields of vision. The approach uses a strategy such as the pressure of the stereo image to 
distinguish coverage in the images of adjacent sensor nodes. The image is the most important vector 
between the intercommunication of information in people's lives and the most important media that 
contain information.

2. IMAGE PROCESSING
Image processing is a technique for changing an image into a computerized structure and playing out 
certain tasks on it, considering a definitive objective of acquiring an improved image or expelling some 
significant data from it. It is a kind of banner harmony where the info is an  image, like the edge of the 
video or photograph and the performance can be the image or characteristics identified with that image.
As a rule, the image processing system fuses images as two-dimensional signs by applying 
authoritatively settled banner processing techniques. Today it is one of the most quickly advancing 
technologies, with its applications in various pieces of an organization. The image processing systems 
center the research region inside the development and data trains.

Figure 2: Image processing

The two kinds of strategies utilized for image processing are simple and digital image processing. 
Straightforward or visual image processing systems can be used for printed adaptations, for example, 
prints and photos. Image specialists utilize a few fundamental elements of explanation while utilizing 
these visual strategies. Image processing isn't just constrained to a district that should be inspected, in 
any case, in the analyst's information. The alliance is another essential device in image processing 
through visual systems. Hence, researchers apply a mix of individual information and assurance the data 
for image processing. The digital processing techniques help in the control of digital images by means of
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C. Since the crude data from the satellite arena image sensors contain insufficiencies. To beat these 
deformities and get data innovativeness, it is important to try different things with various processing 
periods. The three general advances that must be confirmed by a wide scope of data when utilizing a 
digital system are the pre-processing, refreshing and data extraction.

3. IMAGE PROCESSING IN WIRELESS SENSOR NETWORKS
Due to the limited lifetime of the battery in each sensor, it is obvious that the reduction of the transmitted 
data will increase the energy efficiency and the useful life of the network. However, the most obvious 
solution is image compression. The purpose of image compression is to reduce the number of bits 
needed to represent the image, eliminating as much as possible spatial and spectral redundancies. In this 
research, the transmission scheme of the proposed image is based on the transformation of wavelet 
images. The structure of a transformation encoder is illustrated in.

Requirements: small size, high number, tether-less and low cost. The small size involves a small battery. 
Low cost and energy involve low power CPUs, radios with minimum bandwidth and range. The ad hoc 
implementation does not imply maintenance or replacement of the battery. To increase the useful life of 
the network, no raw data is transmitted.

Figure 3: Functional Block Diagram of Jpeg 2000 Encoder

• AD HOC Wireless Networks
A large number of static or mobile self-classified nodes that are arbitrarily transmitted Communication 
with the nearest neighbour Wireless connections the connections are delicate and potentially 
unbalanced. The network is based on power and fades levels. The impedance is high for omnidirectional 
antennas. Sensor networks and sensor and actuator networks are a visible case.

• System Model
Consider a network of wireless multi-jump sensors that wirelessly interconnect sensor nodes prepared 
to recover and deal with a still image. The records, wherein the odd ones were discovered, including
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instances of information data, were at first spared toward the start of the calculation. In this research, no 
extra memory is required at any stage. For every model pixel, the low pass rot requires 8 turns (S) and 8 
stage instructions (A), while the high advance requires 2 moves and 4 augmentations. The energy 
required for low pass/high pass rots can be described by the number of activities. The total calculation 
energy for this system can be prepared as the arrangement of the calculation load and the access to the 
data. Two degrees of wavelet rot are utilized.

4. NETWORK CODING FOR WIRELESS APPLICATIONS
Network Coding (NC) is a generally ongoing subset of network information theory that has prompted 
incredible advancement in enhancing network performance. It includes performing activities other than 
simply sending and replication in the nodes that make up a network. In this research, we attempt to 
inspect the developments in this field and look at the effect this has had on wireless networks, as far as 
the improvements it has made and the resulting application to different classes inside the wireless 
network.

Consider the theory behind NC, the different NC schemes that have been proposed and utilized 
throughout the years, the development of the NC application in the physical layer of networks and a few 
chose NC applications in wireless networks. This section endeavors to investigate the idea of network 
coding (NC), a moderately new subset of information theory, explicitly inside the space of wireless 
networks. Before the fundamental Section that depicts this field, the transmission of data through a 
network was seen basically as a progression of products, which is a trade of products without the 
capacity to process the products themselves.

Network coding changed this, recommending more muddled activities than essentially reproducing and 
transmitting data parcels could be performed on the nodes that make up a given network. This has 
prompted quick progress and has animated the utilization of new numerical apparatuses, in fields, for 
example, polynomial math, matroid theory, geometry, chart theory, combinatorial theory, and 
improvement, among others. Even though NC is a muddled theme to talk about without a critical 
numerical foundation, this research goes for a progressively casual crowd and, in this research, we will 
take measures to lessen the intricacy of the examined scientific theory, while simultaneously attempting 
to catch the different interior subtleties. In this presentation, we will likely offer a concise portrayal of 
what NC includes, and consequently explain the various highlights that characterize this innovation. To 
accomplish this, we give some information on the NC and its basic theory in this research, talk about the 
mainstream coding schemes right now being used in the Section and quickly investigate the network 
encoding dependent on the physical layer in the Section, concentrating on Network Encoding physics 
(PNC), as it is progressively utilized in wireless networks.

• Theory Behind Network Coding
The consequences of this research are communicated as the hypothesis of the most extreme cut of the 
base stream in the theory of the network. This hypothesis expresses that in a stream network, where 
information streams starting with one node then onto the next, the most extreme measure of stream from 
the source to the sink (greatest stream) is equivalent to the base limit that would not enable any stream to 
go from the source-sink when it is cut/expelled from the net with a particular goal in mind (least cut). [3] 
Demonstrated that when operations were permitted in moderate nodes, the most extreme multicast 
speed was equivalent to the base sliced from the source to every beneficiary essentially, if every one of 
the collectors have a similar least cut from the source, NC will enable all nodes to at the same time arrive 
at the base cutting limit.
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Figure 4: Butterfly Network

Figure 5: Modified wireless butterfly network

In this model, node 5 will get both A and A + B, from which it can decode B by subtracting these two 
qualities. Node 6 would utilize a similar technique to decode An in the wake of accepting both B and A + 
B. From this simple model; we can see that few other coding techniques could be connected to a variable 
number of bundles, in different network configurations.

The wireless network butterflies modified as shown in Figure 5 is different from the network to the 
original butterfly in the sense that the packet transmissions may be transmitted from the source node to 
more than one node. Therefore, transmissions are represented using hyperc arcs, rather than arcs. We 
now have a brief and hopefully overview of the underlying theory and the nature of network coding.
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• Network Coding Schemes
The way nodes code and decode the packets they transmit / receive can have a big impact on the 
resulting network performance. Most of the NC schemes in use today are based on algebraic theory. 
While the previous schemes, such as the traditional XOR coding scheme and the deterministic linear 
network coding scheme were deterministic in nature, the most common schemes in use today are not 
deterministic, which means that they are free from the constraint of having feedback information on 
packages for every package sent by all receivers. In this research we will see some common coding 
schemes, namely Random Linear Network Coding (RLNC), Triangular Network Coding (TNC) and 
Opportunistic Network Coding (ONC).

• Random Linear Network Coding
Here, once again, we will use a network model for a general communication system consisting of 
sources, network nodes and sinks connected by channels that could have losses. We can represent a 
system of this type as a directed graph G = {V, E} where the vertices V represent the different nodes of 
the network and the set of edges E consists of arcs between the nodes and denotes the connections in the 
network [4]

• Triangular Network Coding
In order to intrinsically resolve the problem with RLNC described above, where the receivers that 
obtain an insufficient number of packets cannot recover the original packets, the triangular network 
coding has been proposed in [5]. The package coding scheme based on triangular schemes is performed 
in two phases. Thus, the packets are coded bit by bit, in which the bits of "0" are added in such a way as to 
generate a triangular model, known as triangulation, as shown in Figure 6.

Figure 6: Triangular Pattern

• Opportunistic Network Coding
In ONC, tracking nodes can browse all nearby transmissions and store the data packets listened to, 
regardless of whether they are for them or not [6]. As such, the sensor nodes know the packets listened to 
and routed by each neighbouring node and can perform network coding operations based on this 
information.

5. APPLICATIONS OF NC TO WIRELESS NETWORKS
It is unlikely that the incorporation of network coding in  the physical layer will be practical in the near 
future, for a variety of reasons detailed in [7]. However, it is quite feasible to build a network coding in
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overlapping networks. In overlapping networks, nodes are applications that run on computers and edges 
are the transport level connections between computers. Overlapping networks can be based on 
infrastructure, as shown by content distribution networks such as Akamai.

• File download
Downloading files from a server to a client computer is one of the most common tasks that occur in 
network communication. While the downloaded file is traditionally unicast from the server to the client, 
if we ignore the delay, this can also be seen as a multicast of the file from the server to a large group of 
clients using a proportionally large amount of buffering.

• Video on Demand, Live Media Broadcast, and Instant Messaging (IM)
Video on demand can be considered a specialized way to download files in which the parts of the 
downloaded file should arrive in order and should be decoded almost in real time, taking into account a 
small delay. The network encoding can be applied in this case by dividing the file into fragments, which 
can be downloaded sequentially. A similar technique can be used with live media streaming.

• Wireless Mesh Networks
In addition to an application layer overlay network, another convenient place where network encryption 
can be applied is a link-level network, such as a wireless mesh network. Mesh networks consist of mesh 
routers, which provide access to an existing infrastructure and mesh client, which provide multiple hop 
connectivity to mesh routers and use the connectivity provided by other client meshes.

• Network Coding Meets Multimedia
Although each node in the network transmits only messages in a traditional communication system, the 
recent network coding (NC) paradigm proposes to implement a simple network processing with 
combinations of packets in the nodes. NC extends the concept of "encoding" of a message beyond the 
encoding of the source (for compression) and encoding of the channel (for protection against errors and 
losses). It has been shown to increase network performance compared to the implementation of 
traditional networks, reduce the delay and provide robustness to transmission errors and network 
dynamics.

6. CONCLUSION
Wireless sensor networks (WSN) have drawn the attention of the research community over the most 
recent couple of years, driven by an abundance of hypothetical and pragmatic difficulties. This 
developing interest can be to a great extent credited to new applications empowered by vast scale 
networks of little devices equipped for collecting information from the physical environment, 
performing simple processing on the extricated data and transmitting it to remote locations. Critical 
outcomes around there over the most recent couple of years have introduced a flood of common and 
military applications. Starting today, most conveyed wireless sensor networks measure scalar physical 
wonders like temperature, pressure, stickiness, or location of items.

We examined in this research, we consider wireless sensor networks, in which very small sensors can be 
extended to surfaces and can collect energy from the environment, to form detection surfaces through a 
network of integrated communication. The sensor nodes are generally equipped with a radio 
transceiver, a microcontroller, a memory unit and a set of transducers with which they can acquire and 
process data. To reduce the size of each node and the power requirements, the transceiver oscillator is
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replaced by a resonant circuit on the chip. However,  the central frequency of the resonant circuit is 
random, which means that each node chooses a random channel to transmit and another random channel 
to receive. Nodes can self-organize to form a multi-hop network and transmit data to a receiving 
node.The performance between any two nodes is constant if only routing is used, but grows linearly in 
the number of channels if the network coding is used and the radio frequency intervals are chosen 
optimally. The reason network coding is of great help here is that randomly combined packets can find 
their way to the destination without the need to explicitly inform the nodes where their destinations are 
located.
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A B S T R A C T

1. INTRODUCTION
The major development of graph theory has occurred in recent years and inspired to a larger degree and 
it has become the source of interest to many researchers due to its applications to various branches of 
Science & Technology.

Domination in graphs introduced by Ore [11] and Berge [3] has become an emerging area of research in 
graph theory today. Many graph theorists, Allan, R.B. and Laskar, R.[2], Cockayne and Hedetniemi [4, 
5] and others have contributed significantly to the theory of dominating sets, domination numbers and 
other related topics. Haynes et al. [7, 8] presented a survey of articles in the wide field of domination in 
graphs.

Recently, dominating functions in domination theory have received much attention. A purely graph – 
theoretic motivation is given by the fact that the dominating function problem can be seen, in a clear 
sense, as a proper generalization of the classical domination problem. Similarly edge dominating 
functions are also studied extensively.

The theory of Graphs is an important branch of Mathematics that was developed exponentially. Dominat-

ion in graphs is rapidly growing area of research in graph theory today. It has been studied extensively 

and finds applications to various branches of Science & Technology.

Interval graphs have drawn the attention of many researchers for over 40 years. They form a special class 

of graphs with many interesting properties and revealed their practical relevance for modeling problems 

arising in the real world.

In this paper a study of signed Roman domination in an interval graph with consecutive cliques of size 3 is 

carried out.

Keywords: Signed Roman dominating function, Signed Roman domination number, Interval family, 

Interval graph.

Mathematical Subject Classification: 05C69.
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We consider finite graphs without loops and multiple edges.

2. SIGNED ROMAN DOMINATING FUNCTION
The concept of Signed dominating function was introduced by Dunbar et al. [6]. There is a variety of 
possible applications for this variation of domination. By assigning  the values −1 or +1 to the vertices of 
a graph we can model such things as networks of positive and negative electrical charges, networks of 
positive and negative spins of electrons and networks of people or organizations in which global 
decisions can be made.

The Roman dominating function of a graph G was defined by Cockayne et.al [5]. The definition of a 
Roman dominating function was motivated by an article in Scientific American by Ian Stewart [9] 
entitled “Defend The Roman Empire!” and suggested by even earlier byReVelle [12]. Domination 
number and Roman domination number in an interval graph with consecutive cliques of size 3 are 
studied byC. Jaya Subba Reddy, M.Reddappa and B.Maheswari [10].

The concept of signed Roman dominating function was introduced by Ahangar et al. [1]. They presented 
various lower and upper bounds on the signed Roman domination number of a graph and characterized 
the graphs which have these bounds.The minimal signed Roman dominating functions of corona 
product graph of a path with a star is  studied by Siva Parvati [13].

3. INTERVAL GRAPH 

EP Journal on Digital Signal Processing (Volume- 09, Issue - 02, May - August 2025)                                                        Page No. 10



The corresponding interval graph is 

In what follows we consider interval graphs of this type. That is the interval graph which has 
consecutive cliques of size 3. We denote this type of interval graph by G. 

Thesigned Roman domination is studied in the following for the interval graph G. 

4. RESULTS 

Theorem 4.1: Let G be the Interval graph with n vertices, where n ≥ 6. Then the signed Roman 
domination number of  G is 
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Then by Theorem 4.1, the signed Roman domination number is 
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5. ILLUSTRATIONS 
Illustration 1: n =7 

Interval family 

Illustration 2: n =11 
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Interval family 

Interval graph 
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A B S T R A C T

1. INTRODUCTION
After the introduction of the concept of a fuzzy set by Zadeh in his classic paper [1]. C.L.Chang [2] has 
defined fuzzy topological spaces. In 1983, Atannasov [3] introduced the notion of intuitionistic fuzzy 
sets. Soft sets theory was proposed by Molodtsov [4 ] in  1999, as a new mathematical tool for handling 
problems which contain uncertainties. Maji et al [5] gave the first practical application of soft sets in 
decision-making problems. Shabir and Naz [6 ] presented soft topological spaces and defined some 
concepts of soft sets on this spaces and separation axioms. Moreover, topological structure on fuzzy soft 
set was defined by Çoker [7 ], Tanay and Kandemir [8 ], Varol and Aygün [9 ]. Turanlı and Es [ 10] 
defined compactness in intuitionistic fuzzy soft topological spaces.The concept of neutrosophic 
set(NS) was first introduced by Smarandache [11,12 ] which is generalization of classical sets, fuzzy set, 
intuitionistic fuzzy set etc.The concept of connectedness and compactness on neutrosophic soft 
topological space defined by Bera and Mahapatra [13 ].

2. PRELİMİNARİES
Hereafter, we recall some necessary definitions and theorems related to neutrosophic soft set, 
neutrosophic soft topological space for the sake of completeness.

Definition 2.1.[11] Let X be a space of points (objects), with a generic element in X denoted by x. A 
neutrosophic set A is characterized by a truth-member function TA, an indeterminacy-membership 
function IA , and a falsity-membership function FA . TA(x), IA(x) and FA(x) are real Standard or non 
Standard subsets of ]-0,1+[ .That is TA, IA , FA :X →]-0,1+[ . There is no restriction on the sum of TA(x), 
IA(x) , FA(x) and so , -0≤ sup TA(x)+sup IA(x)+ FA(x)≤3+ .

Definition 2.2. [4] Let U be an initial universe set and E be a set of parameters. Let P(U) denote the 
power set of U. Then for A�E, a pair (F,A) is called a soft set over U, where F:A→ P(U) is a mapping.

Definition 2.3. [5] Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the set 
of neutrosophic sets (NSs) of U. Then for A�E, a pair (F,A) is called a neutrosophic soft set (NSS) over 
U, where F:A→ NS(U) is a mapping.

In this paper, the concept of almost and near compactness on neutrosophic soft topological space have 

been introduced along with the  investigation  of   their  several characteristics.  That's  shown  that  the  

neutrosophic soft continuous image of neutrosophic soft almostly compact is neutrosophic soft almostly 

compact and it's properties  developed here.

Copyright © 2019 International Journals of Multidisciplinary Research Academy. All rights reserved.
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Definition 2.4. [14] Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the 
set of neutrosophic sets (NSs) of U. Then, a neutrosophic soft set N over U is a set defined by a set valued 
function fNrepresenting a mapping fN:E→ NS(U) where fN is called approximate function of the 
neutrosophic soft set N. In other words, the neutrosophic soft set is a parametrized family of some 
elements of the set NS(U) and therefore it can be written as a set of ordered pairs, N={(e,{<x,Tf N(e)(x), 
IfN(e)(x), FfN(e)(x)˃:xϵU}):eϵE} where Tf N(e)(x), IfN(e)(x), Ff N(e)(x) ϵ[0,1], respectively the truth-
membership, indeterminacy-membership , falsity-membership function obvios.

Example2.5.[15] Let U={h1,h2,h3} be a set of houses and E={e1(beautiful), e2(wooden), e3(costly)} 
be a set of parameters with respect to which the nature of houses are described.

Let
fN(e1)={<h1,(0.5,0.6,0.3)˃, <h2,(0.4,0.7,0.6)˃, <h3,(0.6,0.2,0.3)˃};
fN(e2)={<h1,(0.6,0.3,0.5)˃, <h2,(0.7,0.4,0.3)˃, <h3,(0.8,0.1,0.2)˃};
fN(e3)={<h1,(0.7,0.4,0.3)˃, <h2,(0.6,0.7,0.2)˃, <h3,(0.7,0.2,0.5)˃};

Then N={[e1, fN(e1)], [e2, fN(e2)], [e3, fN(e3)] }is an NSS over (U,E).

Definition 2.6. [14] 
1.The complement of a neutrosophic soft set N is denoted by Nc and is defined by Nc={(e,{<x,FfN(e) 
(x),1- If N(e)(x), Tf N(e)(x)˃:xϵU}):eϵE}, 
2. Let N1 and N2 be two NSSs over the common universe (U,E). Then N1 is said to be the neutrosophic 
soft subset of N2 iffor each eϵE and for each xϵU, Tf N1(e)(x)≤ Tf N2(e)(x), If N1(e)(x)≥ If N2(e)(x), Ff 
N1(e)(x)≥ Ff N2(e)(x).

We write N1�N2 and then N2 is the neutrosophic soft superset of N1.

Definition 2.7.[ 14] 
1.Let N1 and N2 be two NSSs over the common universe (U,E). Then their union is denoted by N1 ᴗ 
N2=N3 and is defined as:
N3={(e,{<x,Tf N3(e)(x), IfN3(e)(x), FFN3(e)(x)˃:xϵU}):eϵE} where Tf N3(e)(x)= Tf N1(e)(x)◊ Tf
N2(e)(x), IfN3(e)(x)= IfN1(e)(x)* IfN2(e)(x), Ff N3(e)(x)= Ff N1(e)(x)*Ff N2(e)(x).

2.Their intersection is denoted by N1 ∩ N2=N4 and is defined as:
N4={(e,{<x,Tf N4(e)(x), IfN4(e)(x), FFN4(e)(x)˃:xϵU}):eϵE} where Tf N4(e)(x)= Tf N1(e)(x)*Tf
N2(e)(x), IfN4(e)(x)= IfN1(e)(x)◊ IfN2(e)(x), Ff N4(e)(x)= Ff N1(e)(x)◊Ff N2(e)(x).

Definition 2.8. [13] 
1. Let M and N be two NSSs over the common universe (U,E). Then M-N may be defined as, for each 
eϵE and for each xϵU,
M-N={<x,Tf M(e)(x)*FfN (e)(x), IfM(e)(x)◊(1- IfN (e)(x)), FfM(e)(x) ◊Tf N(e)(x) ˃  };
 
2. A neutrosophic  soft set  N over (U,E)  is  said to  be  null   neutrosophic  soft  set if T f  
N(e)(x)=0, IfN(e)(x)=1, Ff N(e)(x)=1 for each eϵE and for each xϵU. It is denoted by ɸ u.
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A neutrosophic soft set N over (U,E) is said to be absolute neutrosophic soft set if Tf N(e)(x)=1, 
IfN(e)(x)=0, Ff N(e)(x)=0 for each eϵE and for each xϵU.It is denoted by1u. Clearly, ɸ uc =1u, 1uc =ᶲu.

Definition 2.9. [13 ] Let NSS(U,E) be the family of all neutrosophic soft sets over U via parameters in E 
and τu� NSS(U,E). Then τu is called neutrosophic soft topology on (U,E) if the following conditions are 
satisfied.
(i) ɸ u, 1u ϵ τu ,
(ii) The intersection of any finite number of members of τu also belongs to τu.
(iii) The union of any collection of members of τu belongs to τu.

Then the triple (U,E, τu) is called a neutrosophic soft topological space. Every member of τu is called τu-
open neutrosophic soft set. An NSS is called τu-closed iffit’s complement is τu-open.

Definition 2.10. [13] Let (U,E, τu) be a neutrosophic soft topological space over (U,E) and 
MϵNSS(U,E) be arbitrary. Then the interior of M is denoted by Mo or int(M) and is defined as:
Mo=�{N1: N1 is neutrosophic soft open and N1�M}.

Definition 2.11.[ 13] Let (U,E, τu) be a neutrosophic soft topological space over (U,E) and A ϵ 
NSS(U,E) be arbitrary. Then the closure of A is denoted by Ā or cl(A) and is defined as:
Ā=∩{N1: N1 is neutrosophic soft closed and A�N1}.

Theorem 2.12. [13 ] Let (U,E, τu) be a neutrosophic soft topological space over (U,E) and A ϵ 
NSS(U,E). Then , (Ā)c=(Ac)o and (Ao)c=(Ac)̅.

Proposition 2.13. [13] Let N1 and N2 be two neutrosophic soft sets over (U,E). Then,
(i)  (N1ᴗ N2)c =N1c∩N2c ,
(ii) (N1∩ N2)c =N1cᴗN2c .
 
Definition 2.14. [13] Let (U,E, τu) be a neutrosophic soft topological space and Mϵ τu. A family Ω={Qi 
:i ϵГ} of neutrosophic soft sets is said to be a cover of M if M�� Qi.

If every member of that family which covers M is neutrosophic soft open then it is called open cover of 
M. A subfamily of Ω which also covers M is called a subcover of M.

Definition 2.15. [13] Let (U,E, τu)be a neutrosophic soft topological space and Mϵ τu.Suppose Ω be an 
open cover of M. If Ω has a finite subcover which also covers M then M is called neutrosophic soft 
compact.

Definition 2.16. [13] Let φ : U→ V and ψ :E→E be two functions where E is the parameter set each of 
the crisp sets U and V. Then the pair (φ, ψ) is called an NSS function from (U, E) to (V, E). We w r i t e ,  
(φ, ψ) : (U,E) → (V,E).

Definition 2.17. [13] Let (M,E) and (N,E) be two NSSs defined over U and V, respectively and (φ, ψ) be 
an NSS function from (U,E) to (V,E). Then,
(1) The image of (M,E) under (φ, ψ), denoted by (φ, ψ) (M,E), is an NSS over V and is defined as:
(φ, ψ) (M,E)=(φ(M),ψ(E))={ <ψ(a),fφ(M)(ψ(a))˃:aϵE}where for each bϵ ψ(E) and yϵV.
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maxφ(x)=y max ψ (a)=b[Tf(M)(a)(x)], if xϵφ-1(y),
Tφ(M)(b)(y)={ 0, otherwise.
minφ(x)=y min ψ (a)=b[If(M)(a)(x)], if xϵφ-1(y), Iφ(M)(b)(y)={ 1, 
otherwise.
minφ(x)=y min ψ (a)=b[Ff(M)(a)(x)], if xϵφ-1(y),
Fφ(M)(b)(y)={ 1, otherwise.

(2) The pre-image of (N,E) under (φ, ψ), denoted by (φ, ψ)-1 (N,E), is an NSS over U and is defined by:
(φ, ψ)-1 (N,E)=(φ-1(N),ѱ-1(E)) where for each aϵ ѱ-1(E) and xϵU.
Tφ-1(N)(a)(x)=TfN(ѱ(a))(φ(x)),
Iφ-1(N)(a)(x)=IfN(ѱ(a))(φ(x)),
Fφ-1(N)(a)(x)=FfN(ѱ(a))(φ(x)).
If ѱ and φ are injective(surjective), then (φ, ψ) is injective(surjective).
 
Definition 2.18. [13 ] Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces.  (φ, ψ) : 
(U,E,τu) → (V,E,τv) is said to be a neutrosophic soft continuous mapping  if for each (N,E)ϵ τv, 
theinverse image(φ, ψ)-1 (N,E)ϵ τu i.e., the inverse image of each  open NSS in (V,E,τv) is also open in 
(U,E,τu).

Theorem 2.19. [13] Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces. Also let, (φ, 
ψ) : (U,E,τu) → (V,E,τv) be a neutrosophic soft continuous mapping. If (M,E) is neutrosophic soft 
compact in (U,E,τu), then (φ, ψ)(M,E) is so in (V,E,τv).

3. NEUTROSOPHIC SOFT ALMOST COMPACTNESS AND NEUTROSOPHIC SOFT NEAR 
COMPACTNESS
Here, the Notion of almost compactness and near compactness on neutrosophic soft topological space is 
developed with some basic theorems.

Definition 3.1. 
(a) A neutrosophic soft topological space (U,E,τu) is called neutrosophic soft almost compact iff every 
open cover of (U,E,τu) has a finite subcollection whose closures cover (U,E,τu), or equivalently, every 
open cover contains a finite subcollection whose closures form a cover of (U,E,τu).
(b) A neutrosophic soft topological space (U,E,τu) is called neutrosophic soft nearly compact iff every 
open cover of (U,E,τu) has a finite subcollection such that the interiors of closures of neutrosophic soft 
sets in this subcollection covers (U,E,τu).

Example 3.2. Let U={h1,h2}, E={e1,e2} and τu={ᶲu, 1u, N1, N2,N3,N4}, where N1, N2,N3,N4 
beingneutrosophic soft sets are defined as following:
fN1(e1)={˂ h1,(1,0,1)˃, ˂  h2,(0,0,1)˃};
fN1(e2)={˂ h1,(0,1,0)˃, ˂  h2,(1,0,0)˃};
fN2(e1)={˂ h1,(0,1,0)˃, ˂  h2,(1,1,0)˃};
fN2(e2)={˂ h1,(1,0,1)˃, ˂  h2,(0,1,1)˃};
fN3(e1)={˂ h1,(1,1,1)˃, ˂  h2,(0,1,1)˃};
fN3(e2)={˂ h1,(0,1,0)˃, ˂  h2,(0,1,1)˃};
fN4(e1)={˂ h1,(1,1,0)˃, ˂  h2,(1,1,0)˃};
fN4(e2)={˂ h1,(1,0,0)˃, ˂  h2,(0,1,1)˃};
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Here N1∩ N1= N1,N1∩ N2= ᶲu, N1∩ N3= N3, N1∩ N4= N3, N2∩ N2= N2, N2∩ N3= ᶲu, N2∩ N4= 
N2, N3∩ N3= N3, N3∩ N4= N3, N2∩ N4= N4, and N1ᴗ N1= N1, N1ᴗ N2= ɸ u, N1ᴗ N3= N1, N1ᴗN4= 
1u, N2ᴗ N2= N2, N2ᴗ N3= N4, N2ᴗN4= N4, N3ᴗN3= N3, N3ᴗN4= N4, N4ᴗN4= N4;

Corresponding t-norm and s-norm are defined as a*b=max{a+b-1,0} and a◊b=min{a+b,1}. Then τu is a 
neutrosophic soft topology on (U,E) and so (U,E,τu) is a neutrosophic soft topological space over (U,E) 
[13].

The family {N1, N2,N3,N4}is an open cover of (U,E,τu). Since cl(N1ᴗN2)=cl(N1ᴗN2)=1u, (U,E,τu) is 
neutrosophic soft almost compact topological space. Also,sinceint(cl(N1ᴗN2))=int(cl(N1ᴗN2))=1u, 
(U,E,τu) is neutrosophic soft nearly compact topological space.

It is clear that in neutrosophic soft topological spaces we have the following implications: neutrosophic 
soft compact→ neutrosophic soft nearly compact→ neutrosophic soft almost compact.

Theorem 3.3. A neutrosophic soft topological space (U,E,τu) is called neutrosophic soft almost 
compact iff each family Ω={Qi :i ϵI} of neutrosophic soft open sets in (U,E,τu) having the finite 
intersection property we have ∩iϵI cl(Qi)≠ ɸ u.

Proof .Let (U,E,τu) be an almost compact neutrosophic soft topological space. Consider Ω={Qi :i ϵI}be 
a family of neutrosophic soft open sets in (U,E,τu) having the finite intersection property. Suppose the 
∩iϵI cl(Qi)= ᶲu.Then we have �iϵI [cl(Qi)]c=∩iϵIint(Qic)= 1u. Since (U,E,τu) almost compact 
neutrosophic soft topological space, there exists a finite subfamily {Qic :i  = 1,2,…,n}such  that � n      
cl(int(Q c))= 1.  Hence � n cl([(Q )]c)= � n [int(cl (Q ))]c= 1 =˃∩ n int(cl(Q ))= ᶲ .But from Q =int(Q 
)�int(cl(Qi)), we see that ∩ n Q = ᶲ which in contradiction with the finite intersection property of the 
family.

Next assume that (U,E,τu) is not almost compact. Then, a neutrosophic soft open cover of {Qi :i ϵI}, 
say,of (U,E,τu) has no finite subcover i.e., �in=1 cl (Qi)≠ 1u. Since [cl(Qi)]c=int(Qic), consists of 
neutrosophic soft open sets in (U,E,τu) and having the finite intersection  property. Then by  hypothesis,      
∩i=n1cl([cl(Qi)]c)  ≠  ɸ u    =˃  �in=1  [cl([ cl
(Qi)]c)]c≠ 1u  =˃ � n int(cl (Qi))≠ 1u which is in contradiction with � n
Qi = 1u since Qi�int(cl(Qi)) for each i=1,2,…,n.

Definition 3.4. A neutrosophic soft set N1 is called a neutrosophic soft regular open set iff 
N1=int(cl(N1)); a neutrosophic soft set N2 is called a neutrosophic soft regular closed set iff N2= 
cl(int(N2)).

Theorem 3.5.In a neutrosophic soft topological space (U,E,τu) the following conditions are equivalent:
(I) (U,E,τu) is neutrosophic soft almost compact.
(ii) For each family Ω={Qi :i ϵI}of neutrosophic soft regular closed sets such that ∩iϵI Qi= ᶲu, 

there exists a finite subfamilyΩ1={Qi :i =1,2,…,n} such that ∩ n Qi = ɸ u.
(iii) ∩iϵIcl(Qi)≠ ᶲu holds for each family Ω={Qi :i ϵI}of neutrosophic soft regular open sets 

having the finite intersection property.
(iv) Each neutrosophic soft regular opencover of (U,E,τu) contains a finite subfamily whose 

closures cover (U,E,τu).
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Proof. The prof of this theorem follows a similar pattern to Theorem 3.3.

Definition 3.6.Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces. Then (φ, ψ) : 
(U,E,τu) → (V,E,τv) is said to be a neutrosophic soft almost continuous mapping if for each (N,E) 
neutrosophic soft regular open set of (V,E,τv) , theinverse image(φ, ψ)-1 (N,E)ϵ τu i.e., the inverse 
image of each neutrosophic soft regular open set in (V,E,τv) is neutrosophic soft open in (U,E,τu).

Theorem 3.7. Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces and (φ, ψ) : 
(U,E,τu) → (V,E,τv) a neutrosophic soft almost continuous surjection mapping. If (M,E) is 
neutrosophic soft almost compact in (U,E,τu), then (φ, ψ) (M,E) is so in (V,E,τv).

Proof. Let {(Ni,E) : i ϵI}be a neutrosophic soft open cover of (φ, ψ) (M,E) i.e., (φ, ψ) (M,E) ��iɛı(Ni,E). 
Since (φ, ψ) is neutrosophic soft almost continuous, {(φ, ψ)-1int(cl((Ni,E))): iϵI}is a neutrosophic soft 
open cover of (M,E) . Since (M,E) is almost compact, there exists a finite subcover {(φ, ψ)-1(Ni,E): 
i=1,2,…,n}such that (M,E) �� n cl(((φ, ψ)-1(int(cl(N ,E))))=1 Hence (φ, ψ) (M,E) �(φ, ψ)[ � 
n cl( (φ, ψ)-1(int(cl(N ,E))))]= � n (φ, ψ)[cl(φ, ψ)-1(int(cl(N ,E))))]=f(1 )=1 . But from int(cl(N ,E )) 
�cl(N ,E) and from the neutrosophic soft almost continuity of f,

(φ, ψ)(cl((φ, ψ)-1int(cl((Ni,E)))) �(φ, ψ)( (φ, ψ)-1 cl((Ni,E)))) �cl (Ni,E) for each  i=1,2,…,n, i.e., � n cl 
(N ,E)=1 . Hence, (φ, ψ) (M,E) is neutrosophic soft almost compact also.

Definition 3.8. Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces. Then (φ, ψ) : 
(U,E,τu) → (V,E,τv) is said to be a neutrosophic soft weakly continuous mapping if for each (N,E) 
neutrosophic soft open set of (V,E,τv) ,
(φ, ψ)-1 (N,E) �int ((φ, ψ)-1(cl(N,E))).

Theorem 3.9. Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces and (φ, ψ) : 
(U,E,τu) → (V,E,τv) a neutrosophic soft weakly continuous surjection mapping. If (M,E) is 
neutrosophic soft compact in (U,E,τu), then (φ, ψ) (M,E) is neutrosophic soft almost compact in 
(V,E,τv).

Proof. The proof is similar to Theorem 3.7.

Definition 3.10. Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces. Then (φ, ψ) : 
(U,E,τu) → (V,E,τv) is said to be a neutrosophic soft strongly continuous mapping if for each (M,E) 
neutrosophic soft set of (V,E,τv) , (φ, ψ)[cl(M,E)] � (φ, ψ) (M,E).

Theorem 3.9. Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces and (φ, ψ) : 
(U,E,τu) → (V,E,τv) a neutrosophic soft strongly continuous surjection mapping. If (M,E) is 
neutrosophic soft almost compact in (U,E,τu), then (φ, ψ) (M,E) is neutrosophic soft compact in 
(V,E,τv).

Proof. By using a similar technique of the proof of Theorem 3.7, the theorem holds.
 
Corollary 3.12. Let (U,E,τu) and (V,E,τv) be two neutrosophic soft topological spaces and (φ, ψ) : 
(U,E,τu) → (V,E,τv) a neutrosophic soft strongly continuous surjection mapping. If (M,E) is
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neutrosophic soft nearly compact in (U,E,τu), then (φ, ψ) (M,E) is neutrosophic soft compact in 
(V,E,τv).

4. CONCLUSION
In this paper, the concepts of Neutrosophic soft topological spaces are introduced and studied. Some 
interesting properties are al so established. The results in this work can be extended to the Neutrosophic 
connectedness properties.
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A B S T R A C T

 INTRODUCTION: 

A graph G is anti-magic if there is a labeling of its edges with 1, 2, . . . , |E| such that the sum of the labels 

assigned to edges incident to distinct vertices are different. A conjecture of Hartsfield and Ringel states 

that every connected graph different from K2 is anti-magic. Our  main result validates this conjecture for 

Boolean graph of cycleCn(n>4) is anti-magic.

Keywords : Boolean graph BG(G), Anti-magic Labeling.

 anti-magic labeling. The problem of anti-magic labeling of graphs was introduced by Hartsfield and 
Ringel [4]. They conjectured that all graphs with no single edge component are anti-magic. Graph 
Labeling has many applications in coding theory, X - ray crystallography, radar, astronomy, circuit 
design, communication network addressing, and data base management .

 Conjecture 1: [4]Every connected graph different from K   is anti-magic. 2

 This conjecture is still open. Interestingly, the graph K2  can be regarded as a tree on two vertices. Thus, 
if we restrict ourselves to trees, the above conjecture holds. Hartsfield and Ringel proved that paths, 
cycles and complete graph Kn, (n>3)  are anti-magic. Recently, Alon et al. [1] have proved that the 
conjecture is true for some classes of dense graphs. They have shown that all dense graphs with  (n>4) 
 vertices and minimum degree        are anti-magic. They also proved that if G is a 
graph with         vertices and the maximum degree                   is anti-
magic and all complete bipartite graphs except       are anti-magic. Anti-magic labeling of the 
Cartesian product of graphs was studied in [7]; if G is a regular anti-magic graph then for any graph H, 
the Cartesian product  H X G  is anti-magic. It was proved in [4] that 2- regular graphs are anti-magic 
and proved in [6] that 3-regular graphs are anti-magic. As a consequence, if G is 2-regular or 3-regular 
then for any graph H, H X G is anti-magic. In this paper, we extend anti-magic labeling to Boolean 
Graph of cycle. 

Definition 1:Boolean graph BG (G) is a graph with vertex set        and two vertices in B(G) 
are adjacent if and only if they correspond to two adjacent vertices of G or to a vertex and non - incident 
edge of G.
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and the edge set is given by 

We consider the when labels of vertices are distinct. 

Subcase (i): when i = 1 where i< j. 
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Subcase (ii): When i = 2where i< j 

Sub case (iii):When i = 3, 4, …, n–1 
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Sub case (iv):When i = n 

We consider the case when labels of edges are distinct. 

Subcase (v):When j = 1 where i>j 

Subcase (vi): When j = 2, 3, …, n–2 
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Subcase (vii): When j = n–1 where i< j 

Subcase (viii): When j = n where i< j 
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Case (b):n º 1 (mod 2) 

Subcase (i): When i = 1 where i< j 

Subcase (ii): When i = 2 where i< j 
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Subcase (iv):When i = n 
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We consider the case when the labels of edges are distinct. 

Sub case (v): When j = 1 where i> j. 

Subcase (vi): When j = 2, 3, …, n-2 
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Subcase (vii): When j = n–1 where i< j 

Subcase (viii):When j = n where i< j 

As a whole the labeling of all the vertices and the edges of the Boolean graph of cycle is anti- magic. 
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A B S T R A C T

Section-1: INTRODUCTION: 
In classical mathematics, the notion of exact solution of a mathematical model is defined. However, in 
general, mathematical models are quite complicated and it becomes an arduous task to define exact 
solution of these models. As a result, the notion of approximate solutions is introduced. Such 
introduction included the emergence of soft set theory where an approximate description of the object is 
provided. In fact, in soft set theory, there is no restriction on the parameterization tools which makes it 
very convenient and easily applicable in real life. Thus, soft set approach has come to be recognised as 
fundamentally important. Aktas and Cagman [1] introduced the basic conceptsof soft groups, soft 
subgroups, normal soft subgroups and soft homomorphism and discussed their basic properties. Jun [4] 
also in another paper, introduced the notion of soft p- ideals , p- idealistic soft BCI- algebras and 
discussed their basic properties. The algebraic structures of soft set theory have also been studied 
extensively. Feng et.al [2, 3] considered the algebraic structure of semi ring and introduced the notion of 
soft semi ring. Some basic algebraic properties of soft semi ring and some related notions such as soft 
ideals, idealistic soft semi rings and soft semi ring homomorphism were defined and investigated with 
illustrative examples .Jun [5] applied the notion of soft sets to the theory of BCK/BCI- algebras and 
introduced the notion of soft BCK/ BCI- algebras, soft sub algebras and then derived their basic 
properties. It was proved that soft equality relation is a congruence relation with respect to some 
operations. The notions of soft sub rings, soft ideal of a soft ring, idealistic soft rings and soft ring 
homomorphism were introduced with some corresponding example. Atagun and Sezgin [13] 
introduced and studied some sub structures such as soft sub rings and soft ideals of a ring, soft subfield of 
a field and soft sub module of a module with several illustrative examples. Complex intuitionstic 
flexible fuzzy soft interior ideals and M-structures defined various algebraic structure in [ 15,16] . By 
introducing the concept of normalistic soft group, normalistic soft group homomorphism, and 
establishing that the normalistic soft group isomorphism is an equivalence relation on normalistic soft

In this paper, we introduce the concept of m-dimensional structures on flexible fuzzy soft subgroups, and 

investigate some of its properties. we also obtain the characterisations of normal flexible fuzzy soft 

subgroup with illustrative examples.

Keywords: Soft set, relation, fuzzy soft set, pre-image, flexible fuzzy subset, m-level subset, m-

dimensional flexible subgroup, cosset.

EP Journal on Digital Signal Processing (Volume- 09, Issue - 02, May - August 2025)                                                        Page No. 36



groups which defined in [1]. On flexible fuzzy subgroups with flexible fuzzy order discussed by [14-16] 
.Maji et.al [8,9,10] introduced the notion of fuzzy soft sets. In 2011, Neog and Sut [12] put forward some 
propositions regarding fuzzy soft set theory. In this paper, we introduce the concept of m- dimensional 
structures on flexible fuzzy soft subgroup, and investigate some of its properties. we also obtain the 
various structures of flexible fuzzy soft subgroup with illustrative examples.

SECTION-2 PRELIMINARIES:
We review basic definitions that we are necessary for this paper.

Definition 2.1:[18]: A fuzzy set µ in a universe X is a mapping µ : X → [0,1].  Definition 2.2:[9] Let U be 
any Universal set, E set of parameters and AÍ E. Then a pair (K,A) is called soft set over U, where K is a 
mapping from A to 2U , the power set of U. 

Example 2.3: Let X={c1,c2,c3} be the set of three cars and E = {costly(e1), metallic colour(e2), 
cheap(e3)}be the set of parameters, where A={e1,e2} Ì E. Then (K,A)={K(e1)={c1,c2,c3},K(e2)={c 
1,c2} } is the crisp soft set over X.

Definition 2.6:[7] Let U be the universal set, E be the set of parameters and AÌ E. Let K(X) denote the set 
of all fuzzy subsets of U. Then a pair (K,A) is called fuzzy soft set over U, where K is a mapping from A 
to K(U).

Example 2.7:Let U={c1,c2,c3} be the set of three cars and E={costly(e1),metallic color(e2), 
cheap(e3)} be the set of parameters, where A={e1,e2} Ì E. Then (K,A)={K(e1)={c1/0.6,c2/0.4,c3/0.3} 
, K(e2)={ c1/0.5,c2/0.7,c3/0.8}} is the fuzzy soft set over U denoted by KA.

Definition 2.8:[7] Let KA be a fuzzy soft set over U and a be a subset of U. Then upper a - inclusion of 
KA denoted by KaA = { xÎA /K(x) ≥ a }. Similarly KaA = { xÎ A / K(x) ≤ a } is called lower a-inclusion of 
KA.

Definition 2.9:[11] Let KA and GB be fuzzy soft sets over the common universe U and  ψ :  A ® B be a 
function. Then fuzzy soft image of KA under ψ over U denoted by ψ(KA) is a set- valued function, 
where ψ(KA):B® 2U defined by ψ(KA) (b)={È{K(a) / aÎA and ψ (a)=b} , if ψ-1(b)¹ φ} for all bÎ B, the
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soft pre-image of GB  under ψ over U denoted by ψ-1(GB) is a set-valued function, whereψ-1(GB) : A ®  

2U defined by ψ-1(GB)(b) = G(ψ(a)) for all a  Î A.  Then fuzzy soft anti-image of KA under ψ over U 
denoted by ψ(KA) is a set-valued function, where ψ(KA):B ® 2U defined byψ-1(KA)(b) ={Ç{K(a) / 
aÎA and ψ (a) = b} , if ψ-1(b) ¹ φ} for all b Î B. 

Definition 2.10:[14] Let X be a set. Then a mapping μ: X→ P*([0,1]) is called flexible subset of X, 
where P*([0,1]) denotes the set of all non empty subset of [0,1]

Definition 2.11:[14] Let X be a non empty set .Let μ and l be two flexible fuzzy subset of X. Then the 
intersection of μ and λ denoted by μÇl and defined by μÇl={min{a,b}/ aÎμ(x),bÎl(x)} for all xÎX. The 
union of μ and λ denoted by μÈl and defined by μÈl={max{a,b}/ aÎ μ(x),bÎl(x)} for all xÎX.

Definition 2.12 [14] Let U be an initial universe, E be the set of all parameters and A ⊂ E. A pair (F, A) is 
called a flexible fuzzy soft set over U where F: A → P(U) is a mapping from A into  P(U) , where P(U) 
denotes the collection of all subsets of U. 

Example 2.13:Consider the example 2.5, here we cannot express with only two real numbers 0 and 1, we 
can characterized it by a membership function instead of crisp numbers 0 and 1, which associate with 
each element a real number in the interval [0,1].Then 

Definition 2.14: An m- dimensional flexible fuzzy soft set (or a P*[0,1]m- set) on X is a mapping A: 
X→ P* [0,1]m. we denote the set of all m-dimensional flexible fuzzy soft sets on X by m(X).

Note that [0,1]m (m-power of [0,1]) is considered a posset with the point wise order ≤ , where m is an 
arbitrary ordinal number ( we make an appointment that m = [n/n < m ] when m > 0), ≤ is defined by x ≤ y 
↔ ui(x) ≤ ui(y) for each i ∈ m (x,y ∈ P*[0,1]m), and ui: P*[0,1]m → [0,1] is the i- th projection mapping 
( i ∈ m). Also, 0 = (0,0,0, ……… ,0) is the smallest element in P*[0,1]m and 1 = ( 1,1,.............. , 1) is the 
largest element in P*[0,1]m
.
SECTION-3: M-DIMENSIONAL FLEXIBLE FUZZY SOFT SUBGROUP

Definition-3.1: An m-dimensional flexible fuzzy soft set A on a group G is called an m- dimensional 
flexible fuzzy soft subgroup if the following conditions hold:
(MFFSG1) inf {A(x*y)} ≥ min {infA(x), infA(y)}and inf {A(x-1)} ≥ inf {A(x)}, (MFFSG2) sup 
{A(x*y)} ≤ max {sup A(x), sup A(y)} and sup A(x-1) ≤ sup A(x). That is
(MFFSG1) inf {xi o  A(x*y)} ≥ min {inf (xi o  A(x)), inf (xi o  A(y))}and inf {xi o  A(x-1)} ≥ inf
{xi o  A(x)},
(MFFSG2) sup {xi o  A(x*y)} ≥ min {sup (xiₒ A(x)), sup (xi o  A(y))}and sup {xiₒA(x-1)} ≥ sup
{xi o  A(x)}, for all x, y ∈ G, i = 1,2,3 ----------, m. we denote the set of all m-dimensional flexible fuzzy 
soft subgroup of a group G by Fm(G).
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Example-3.2: Let S = {e,a,b,ab}be the non-cyclic group of order 4. We define an m- dimensional 
flexible fuzzy subset A : S → P*[0,1]m by
(0.7, 0.7, …… ,0.7), if q = ei
A(q ) =
( 0.2, 0.2 ……. ,0.2), otherwise.

By direct calculations, It is easy to see that A is an m-dimensional flexible fuzzy soft subgroup of S.

Now we state the following lemma’s without proof.

Lemma-3.3: Let A ∈ Fm(G).Then for all x ∈ G
(i) inf A(e) ≥ inf A(x) and inf A(x) = inf A(x-1)
(ii) sup A(e) ≤ sup A(x) and sup A(x) = sup A(x-1).

Lemma-3.4: Let A be an m-dimensional flexible fuzzy soft subgroup of G. Then A# ={ x /x
∈G , inf A(x) = inf A(e)} and A# = { x /x ∈ G , inf A(x) ≥ {0,0,0,…............ , 0} are subgroups of G.

Definition-3.5: Let A1 and A2 be two m-dimensional flexible fuzzy soft subsets of a group. Then the 
intersection is defined as inf (A1 ∩ A2) (xy-1) = min { inf A1(xy-1), inf A2(xy-1)}

Theorem-3.6:Let A1 and A2 be two m-dimensional flexible fuzzy soft subsets of a group. Then A1 ∩ 
A2 is an m-dimensional flexible fuzzy soft subgroup of G.

Proof: Here we show that
inf (A1 ∩ A2) (x*y-1) ≥ min {inf (A1 ∩ A2) (x) , inf (A1 ∩ A2)(y-1)}
By definition -3.5, we see that
inf (A1 ∩ A2)(x*y-1) = min { inf A1(x*y-1), inf A2(x*y-1)}
≥ min { inf (A1(x), A1(y-1)), inf (A2(x), A2(y-1))}
= min { inf (A1(x), A2(x)), inf (A1(y-1), A2(y-1))}
= min {inf (A1 ∩ A2)(x), inf (A1 ∩ A2)(y-1)}.

Hence A1 ∩ A2 is an m-dimensional flexible fuzzy soft subgroup of G.

Definition-3.7: Let A ∈ m(U). For t ∈ P*[0,1]m, the set At = { x ∈ U / A(x) ≥ t} is called an m- level 
subset of an m-dimensional flexible fuzzy soft subset A. Note that At is an ordinary subset of U.

Theorem-3.8: Let G be a group and let A be an m- dimensional flexible fuzzy soft subgroup of G. Then 
the m-level subset At, for t ∈ P*[0,1]m, t ≤ A(e), is a subgroup of G, where e is the identity of G.

Proof: Since At = {x ∈ G / A(x) ≥ t}, then At is non-empty. e ∈ At for all t ∈ P*[0,1]m.

Let x,y ∈ At. Then A(x) ≥ t and A(y) ≥ t. Since A ∈ Fm(G), inf A(x*y) ≥ min {inf A(x), inf A(y)}. This 
means that A(x*y) ≥ t. Hence x*y ∈ At. Let x ∈ At implies A(x) ≥ t. Since A is an m-dimensional 
flexible fuzzy soft subgroup of G, inf A(x-1) ≥ inf A(x) and hence A(x) ≥ t. This implies that x-1 ∈ At . 
Therefore, At is a subgroup of G.
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Example 3.9: Let Q = {e, a,b,ab} be the klein 4-group. we define an m-dimensional flexible fuzzy soft 
subgroup A: Q → P*[0,1]m of S by A (e) = t0, A(a) = t1, A(b) = A(ab) = t2, where t0> t1> t2 for all t0 , t1, 
t2 ∈ P*[0,1]m. Since A is an m-dimensional flexible fuzzy soft subgroup of S. we note that, At0 = {e}, 
At1 = {e,a} and At2 = { e,a,b,ab } are the subgroups of S.

Theorem-3.10: Let G be a group and let A be an m-dimensional flexible fuzzy soft subset of G such that 
At is a subgroup of G for al t ∈ P*[0,1]m, t ≤ A(e) . Then A is an m-dimensional flexible fuzzy soft 
subgroup of G.

Proof: Suppose that x,y ∈ At and let A(x) = t1 and A(y) = t2. Then x ∈ At1, y ∈ At1. We assume that t1 
≤ t2. Then it implies At2 is subset of At1. So y ∈ At1.Thus x,y ∈ At1 and since At1 is a subgroup of G, 
by hypothesis, x*y ∈ At1.Therefore, inf A(x*y) ≥ t1 = min {inf A(x),

inf A(y)}. Again, let x ∈ G and A(x) = t. Then x ∈ At1. Since At is a subgroup of G, x-1 ∈ At. Therefore 
A(x-1) ≥ t. Hence A(x-1) ≥ A(x). Thus. A is an m-dimensional flexible fuzzy soft subgroup of G.

Example 3.11: Let S3 = { e ,a,a2,b,ab,a2b}be the symmetric group with 6 elements. we define an m-
dimensional flexible fuzzy subset A : S3 → P*[0,1]m by
A(a) = A(b) = t1, A (e) = A(a2b) = t0 , A(a2) = A(ab) = t2, for all t0, t1, t2 ∈ P*[0,1]m, where t0 > t1 > t2. 
From the theorem-3.10, it is easy to clear that A is not an m-dimensional flexible fuzzy soft subgroup of 
S3 because At1 = {e, a, b, a2b} is not a subgroup of S3.

Definition 3.12: Let G be a group and A be an m-dimensional flexible fuzzy soft subgroup of G. The 
subgroups At = { x ∈ G / A(x) ≥ t }for t ∈ P*[0,1]m are called m-dimensional level subgroups of A.

We now state the following theorem without its proof.

Theorem 3.13: Every subgroup H of a group G can be realized as an m-dimensional level subgroup of 
some m- dimensional flexible fuzzy soft subgroup of G.

Definition 3.14: Let A ∈ Fm(G). Then A is called an m-dimensional commutative flexible fuzzy soft 
subset of G if and only if A(x*y) = A(y*x) for all x, y ∈ X.

Definition 3.15: Let A ∈ Fm(G). Then A is called an m-dimensional normal flexible fuzzy soft 
subgroup of G if it is an m-dimensional commutative flexible fuzzy subset of G.

Let Nm(G) denotes the set of all m-dimensional normal flexible fuzzy soft subgroups of G. Example 
3.16: Let Փs = {± 1, ± i , ± j , ± k } be a group of quaternious with 8 elements. we define an m-dimensional 
flexible fuzzy soft subgroup A : Փs → P*[0,1]m of Փs by A(1) = t0, A(-1) = A(± i ) = t1 , A(± j) = A(±k) = 
t2, for all t0> t1> t2 and t0, t1, t2 ∈ P*[0,1]m. Then A is an m-dimensional flexible fuzzy soft subgroup 
of Փs.

Remark 3.17: Every m-dimensional flexible fuzzy soft subgroup of G is normal if G is an abelian 
group.
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Example 3.18: Let Q = { e, a,b,ab} be the klein 4-group. We define an m-dimensional flexible fuzzy soft 
subgroup A: Q → P*[0,1]m by A (e) = A(ab) = t0 , A(a) = A(b) = t1, for all t0> t1 and t0 , t1 ∈ P*[0,1]m. 
Since Q is an abelian group, so from the above remark, A is an m-dimensional normal flexible fuzzy soft 
subgroup of Q.

Remark 3.19: If A1,A2 ∈ Fm(G) and A1, A2 does not belong to Nm(G), then A1 ∩ A2 is not an m-
dimensional normal flexible fuzzy soft subgroup of G.

4. PROPERTIES OF M-DIMENSIONAL NORMAL FLEXIBLE FUZZY SUBGROUPS

Definition 4.1: Let A1,A2 ∈ Fm(G) and A1 is subset of A2 . Then A1 is called an m- dimensional 
normal flexible fuzzy soft subgroup of an m-dimensional flexible fuzzy soft subgroup A2 , if inf A(xyx-
1) ≥ min {inf A(y), inf A(x)} for all x, y ∈ G.

From the above definition we see that
(1) If A1 ∈ Nm(G), A2 ∈ Fm(G), and A1 is subset of A2, then A1 is m-dimension normal 

flexible fuzzy soft subgroup of A2.
(2) Every m-dimensional flexible fuzzy soft subgroup is an m-dimensional normal flexible 

fuzzy soft subgroup of itself.

Definition 4.2: Let A be an m-dimension flexible fuzzy soft subgroup of a group G. For any x ∈ G, we 
define a map Åx : G → P*[0,1]m by Åx(x) = A(xy-1) for all y ∈ G.

Theorem 4.3: If A1 ∈ Nm(G) and A2 ∈ Fm(G), then A1 ∩ A2 is an m-dimensional normal flexible 
fuzzy soft subgroup of A2.

Proof: Clearly, A1 ∩A2 ∈ Fm(G) and A1∩A2 is subset of A2. By definition- 4.2,
(A1 ∩ A2)(xyx-1) = min { inf A1(xyx-1), inf A2(xyx-1)}
= min {inf A1(y), inf A2(xyx-1)}
≥ min { inf A1(y) , inf(A2(x), A2(y), A2(x-1))}
= min { inf (A1 ∩A2)(y), A2(x)}
For all x, y ∈ G. Therefore, A1 ∩A2 is an m-dimensional normal flexible fuzzy soft subgroup of G.

Theorem 4.4: Let A1,A2, A3 ∈ Fm(G) be such that A1 and A2 are m-dimensional normal flexible fuzzy 
soft subgroups of A3. Then A1 ∩ A2 is an m-dimensional normal flexible fuzzy soft subgroup of A3.

Proof: Since A1, A2 ∈ Fm(G), it follows that A1 ∩A2 ∈ Fm(G) and A1∩A2 is subset of A3.

Now
(A1 ∩ A2)(xyx-1) = inf (A1(xyx-1), A2(xyx-1)}
≥ inf {inf (A1(y), A3(x)), inf (A2(y), A3(x))}
≥inf {(A1 ∩ A2)(y), A3(x)}.

Hence A1∩ A2 is an m-dimensional normal flexible fuzzy soft subgroup of A3.
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Theorem 4.5: If A1′ is an m-dimensional normal flexible fuzzy soft subgroup of A1 and A1, A2 ∈ 
Fm(G), then A1′ ∩ A2 is an m-dimensional normal flexible fuzzy soft subgroup of A1 ∩ A2.

Proof: Clearly, A1′ ∩A2 ∈ Fm(G) and A1′∩A2 is subset of A1 ∩A2. By definition- 4.2,
(A1′ ∩ A2)(xyx-1) = min { inf (A1′(y)), inf A2(xyx-1)}
≥ min { inf A1′(y) , inf (A2(x), A2(y), A2(x-1))}
= min { inf (A1′ ∩A2)(y), inf (A1 ∩A2(x)}

For all x, y ∈ G. Therefore, A1′ ∩A2 is an m-dimensional normal flexible fuzzy soft subgroup of A1 ∩ 
A2.

Now we state the following theorem without its proof

Theorem 4.6: Let A ∈ Nm(G). Then A# = { x/ x ∈ G, A(x) = A(e)} and A# = { x/ x ∈ G , 1A(x) ≥ (0, 0, 
………, 0)}are normal flexible fuzzy soft subgroups of G.

Theorem 4.7: Let A be an m-dimensional flexible fuzzy soft subgroup of a group G. Then A is an m-
dimensional normal flexible fuzzy soft subgroup of G if and only if  A([x, y]) ≥ A(x) for all x, y ∈ G.

Proof: Suppose that A is an m-dimensional normal flexible fuzzy soft subgroup of G. Then A(x-1y-1xy) 
≥ inf (A(y-1xy), A(x-1))
= inf (A(x), A(x)) = A(x).

Now suppose that A satisfies the relation A([x,y]) ≥ A(x) for all x, y ∈ G. Then for x, z ∈ G, we have 
A(x-1zx) = A(zz-1x-1zx)
≥ inf (A(z), A([z,x])) = A(z).

Thus
A(x-1zx) ≥ A(z) for all z,x ∈ G. ------------------------------------------------------- (1)

Again, we get
A(z) = A(x.x-1zxx-1) ≥ inf (A(x), A(x-1zx)) --------------------------------------- (2)

Now if inf (A(x), A(x-1zx)) = A(x), then we get that A(z) ≥ A(x) for all x, z ∈G.Then A is a constant 
function, and there is nothing to prove. So we assume that inf (A(x), A(x-1zx)) = A(x-1zx). Then (2) 
gives that A(z) ≥ A(x-1zx) for all x,z ∈ G. By this inequality with (1),we have A(x-1zx) = A(z) for all x,z 
∈ G. Hence A is constant on the conjugate classes of G. Example 4.8: Let D8 be a dihedral group of 
order 8 given by D8 = { e,a,a2,a3,b,ab,a2b,a3b } . where we have a4 = b2 = e and a3b = ba. Define A: 
D8→ P*[0.1]m by setting A(e) = A(a3b) = 1, A(a) = A(a2) = A(a3) = A(b) = A(ab) = A(a2b) = 0.3.

It is easy to see that A ∈ Fm(D8) and A does not belong to Nm(D8) because A(a3.b) ≠ A(b.a3). Now the 
cossets of A in D8 is given by
Ae = { 1, 0.3, 0.3. 0.3, 0.3, 0.3, 0.3, 1}
Aa = { 0.3, 1, 0.2,0.3, 0.3, 0.3, 1, 0.3}
Aa2= {0.3.0.3, 1, 0.3, 0.3, 0.3, 0.3, 1}
Aa3= { 0.3,0.3,0.3,1, 0.3, 0.3, 0.3,1}
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Ab = {1, 0.3,0.3,0.3, 0.3, 0.3, 1, 0.3}
Aab ={0.3,0.3,0.3,0.3,0.3, 1, 0.3, 1}
Aa2b = {0.3,0.3, 0.3, 0.3, 1,0.3,1,0.3}
Aa3b = {1,0.3, 0.3,0.3,0.3,0.3,0.3,1}.

Here Ab = Aa3 , Aa2 = Aab. But Ab o Aa2 = Aa2b ≠ Aa3 o Aab = Ab. Hence A is m-dimensional normal 
flexible fuzzy soft subgroup.

CONCLUSION: Algebraic structures play a prominent role in mathematics with wide ranging 
applications in many disciplines such as computer science, information science, topological spaces and 
so on. This provides sufficient motivation to researchers to review various concepts and results on 
algebraic structures and in the broader framework of soft set setting.

.These include smoothness of functions, game theory, operations research, Reimann and Perron 
integrations, probability theory and measure theory. In this article, we discuss the concept of m-
dimensional structures on flexible fuzzy soft subgroup, and investigate some of its properties. The 
characterisations of various structures of normal flexible fuzzy soft subgroups related to cossets with 
illustrative examples.
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