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 ON THE DETACHMENT OF PATCHED PANELS UNDER
 THERMOMECHANICAL LOADING

WILLIAM J. BOTTEGA AND PAMELA M. CARABETTA

 1. Introduction

 The role of patched structures has expanded in modern engineering, as uses range from large-scale  

structural repair to sensors and actuators to small-scale electronic systems. Detachment of the 

constituent structures is thus an issue of concern as it may influence the effectiveness and integrity of the 

composite structure. By its nature, the structure possesses a geometrical discontinuity at the edge of the 

patch. Stress concentrations within the base structure-patch interface at this location (see, for example, 

[Wang and Rose 2000]) can lead to the initiation of debonding.1 As a result, a primary mode of failure of 

such structures under various loading conditions is edge debonding and its propagation. The 

characterization of edge debonding is thus of critical importance in preserving the useful life of this type 

of structure. The structures of interest are typically subjected to temperature variations from the 

reference state. Such  temperature changes can influence the onset and extent of damage in these 

structures. In this light, Duong and Yu [2002] examined the thermal effects of curing on the stress 

 The problem of propagation of interfacial failure in patched panels subjected to temperature change  and 

transverse pressure is formulated from first principles as a propagating boundaries problem in the calculus 

of variations. This is done for both cylindrical and flat structures simultaneously. An appropriate 

geometrically nonlinear thin structure theory is incorporated for each of the primitive structures (base 

panel and patch) individually. The variational principle yields the constitutive equations of the composite 

structure within the patched region and an adjacent contact zone, the corresponding equations of motion 

within each region of the structure, and the associated matching and boundary conditions for the structure. 

In addition, the transversality conditions associated with the propagating boundaries of the contact zone 

and bond zone are obtained directly, the latter giving rise to the energy release rates in self-consistent 

functional form for configurations in which a contact zone is present as well as when it is absent. A 

structural scale decomposition of the energy release rates is established by advancing the decomposition 

introduced in W. J. Bottega, Int. J. Fract. 122 (2003), 89–100, to include the effects of temperature. The 

formulation is utilized to examine the behavior of several representative structures and loadings. These 

include debonding of unfettered patched structures subjected to temperature change, the effects of 

temperature on the detachment of beam-plates and arch-shells subjected to three-point loading, and the 

influence of temperature on damage propagation in patched beam-plates, with both hinged-free and 

clamped-free support conditions, subjected to transverse pressure. Numerical simulations based  on 

closed form analytical solutions reveal critical phenomena and features of the evolving composite 

structure. It is shown that temperature change significantly influences critical behavior.
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intensity factor for an octahedralshaped composite repair patch bonded to a cracked rectangular plate. A 

general expression for the  stress distribution was calculated analytically by adopting an “equivalent 

inclusion method” attributed to Rose [1981], assuming a second order polynomial distribution for the 

strains. The solution is used to analyze a sample problem and is compared with results using FEM. 

Related work includes that of Wang et al. [2000], who analyzed thermally-induced residual stresses due 

to curing in plates with circular patches. Structures were restricted to those with identical coaxial 

circular patches on the upper and lower faces of the plate so as to eliminate bending as an issue. Moore 

[2005], with an eye towards avoiding detachment of layers due to uniform temperature change, 

developed an analytical beam type model in the spirit of Timoshenko [1925] to describe peeling of a 

composite laminate under thermal load. In this context, he calculated the peeling moment that arises 

from the peel stress at any interface of the structure due to an applied uniform temperature change from 

the curing temperature. This was done via a force balance approach, where a decomposition of the 

moments into thermal and mechanical parts was utilized. The results were then applied to three- and 

four-layer beams. In a similar vein, Toya et al. [2005] employed a force balance based on classical beam 

theory to evaluate the energy release rate for a bilayer beam possessing an edge delamination when the 

structure is subjected to different temperatures at the top surface, bottom surface, and interface. They 

characterized the mode mix using a small-scale decomposition attributed to Toya [1992] which utilizes 

complex stress intensity factors and the crack closure method to characterize the energy release rate.

   In related work, Karlsson and Bottega [2000a; 2000b] studied the effects of a uniform temperature  f 

ield applied to a patched plate, where the base structure is fixed at both ends with regard to in-plane 

translation. In that work, the authors uncovered and explained the instability phenomenon they refer to 

as “slingshot buckling”, whereby, at a critical temperature, the structure “slings” dynamically from an 

equilibrium configuration possessing deflections in one direction to another equilibrium configuration 

with deflections in the opposite direction. Rutgerson and Bottega [2002] examined the thermo-elastic 

buckling of multilayer shell segments. In that study, the layered shells are subjected to an applied 

transverse pressure in addition to a uniform temperature field. The nonlinear analysis therein showed 

“slingshot” buckling to occur for thermal loading of these types of structures as well, and at temperatures 

well below the conventional “limit point” (see also [Rutgerson and Bottega 2004]). The findings on 

slingshot buckling have since been unified [Bottega 2006]. It is concluded that this type of buckling is 

inherent to many types of composite structures and occurs due to competing mechanical and thermal 

elements of the loading. Most recently, Carabetta and Bottega [2008] studied the effects of geometric 

nonlinearities on the debonding of patched beam-plates subjected to transverse pressure. Analyses using 

both nonlinear and linearized models were conducted and compared. Significant discrepancies were 

seen to occur between behaviors predicted by the two models, both with respect to the onset of damage 

propagation and with regard to the stability of the process and to pre-growth behavior, demonstrating the 
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influence of geometric nonlinearities on the phenomena of interest.

    In the present work, we examine debonding of both initially flat and initially curved patched structures  

under uniform temperature alone and in consort with transverse pressure and three-point loading. 

Toward this end, the problem of propagation of interfacial debonds in patched panels subjected to 

temperature change and transverse pressure is formulated from first principles as a propagating 

boundaries problem  in the calculus of variations, in the spirit of [Bottega 1995; Bottega and Loia 1996; 

1997; Bottega and Karlsson 1999; Karlsson and Bottega 1999a; 1999b], where various issues, 

configurations, and loading conditions were studied. For the present study, temperature is accounted for. 

A region of sliding contact adjacent to the intact region is also considered, and the boundary of the intact 

region as well as the boundary between the contact zone and a region of separation of the patch and base 

panel are each allowed to vary along with the displacements within each region. This is done for both 

cylindrical and flat structures simultaneously. An appropriate geometrically nonlinear thin structure 

theory is incorporated for each of the primitive structures (base panel and patch) individually. The 

variational principle then yields the constitutive equations of the composite structure within the patched 

region and an adjacent contact zone, the corresponding equations of motion within each region of the 

structure, and the associated matching and boundary conditions for the structure. In addition, the 

transversality conditions associated with the propagating boundaries of the contact zone and bond zone 

are obtained directly, the latter giving rise to the energy release rates in self-consistent functional form 

for configurations in which a contact zone is present as well as when it is not. A structural scale 

decomposition of the energy release rates is established by advancing the decomposition of [Bottega 

2003] to include the effects of temperature. The formulation is then utilized to examine the behavior of 

several representative structures and loadings. These include debonding of unfettered patched structures 

subjected to temperature change, the effects of temperature on the detachment of beam-plates and arch-

shells subjected to three-point loading, and the influence of temperature on damage propagation in 

patched beam-plates, with both hinged-free and clamped-free support conditions, subjected to 

transverse pressure. (The latter is shown in Figure 1.) Numerical simulations based on exact analytical 

solutions to the aforementioned formulation are performed, the results of which are presented in load-

damage size space. Interpretation of the corresponding “growth paths” admits characterization of the 

separation behavior of the evolving composite structure. It is shown that temperature change 

significantly influences critical behavior.

 2. Formulation
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3. Delamination mode mix

 The bond energy (that is, interfacial toughness) is generally dependent upon the mix of “delamination  

modes”. To assess this influence for the system under consideration, we adopt the structural scale 

decomposition of the energy release rate for long thin-layered structures established by Bottega [2003] 

and extend it to include the thermal effects considered for the present study. In the aforementioned 

reference, the decomposition is established for a general structure and is then applied to selected specific 

structural configurations, including patched structures. The presence of a contact zone is taken to imply 

pure mode-II delamination, while the absence of contact is considered to (generally) imply mixed modeI 

and mode-II delamination. The mixed mode decomposition is based on the energy release rates for 

contact and no contact together with a “curvature of contact” defined therein. The decomposition for the 

present problem follows directly from the aforementioned reference and the inclusion of the thermal 

terms as follows. The last three terms of the energy release rates given by (42) are seen to constitute the 

relative thermomechanical membrane energy at the bond zone boundary and thus contribute to the 
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mode-II delamination energy release rate. Incorporating the last two of these (the first is already included

 in the original) into the resulting partitioning of the energy release rate for the class of patched structures  

currently under consideration [Bottega 2003, Section 5.3] gives the following decomposition for the 

present structure:

 4. Analysis

 The mixed formulation presented in the previous section admits analytical solutions to within a numer 

ically determined membrane force parameter. (7)–(9) together with the matching conditions, (16)–(23), 

and the pertinent boundary conditions of (15) and (24)–(27), can be readily solved to yield analytical 

solutions for the transverse displacement in terms of the membrane force. For given material and 

geometric properties, the membrane force can be evaluated numerically by substituting the 

corresponding analytical solutions into the integrability condition, (46), and finding roots (values of N0) 

of the resulting transcendental equation using root solving techniques. Each root is associated with an 

equilibrium configuration of the evolving structure for given values of the temperature, pressure, 

damage size, and length of the contact zone. Once obtained, these values can be substituted back into the 

solution for the transverse deflection and the result then substituted into the transversality conditions 

(42) to generate the delamination growth paths for the evolving structure.4 The onset, stability, and 

extent of propagation can be assessed from these paths. (As a special case, it may be noted from (25)2 

and (41)1 that when the edges of the base structure are free to translate in the axial (circumferential) 

direction, the uniform membrane  force vanishes identically .N0 0/. For this case, the analytical 

solutions may be obtained by direct integration, and substituted into the transversality condition. The 

corresponding integrability condition will then simply yield the axial (circumferential) displacement of 

the edge of the base structure.) Finally, the issue of a propagating contact zone may be examined by 

evaluating a solution for a given value of b (associated with a given value of a) and checking to insure 

that the resulting displacements satisfy the kinematic inequality (43)2. The energy release rates for 

configurations with valid contact zones may then be plotted as a function of the contact zone boundary 

coordinate, b, for selected values of the bond zone size, a. (It was shown in [Bottega 1995] that for a 

certain class of problems a propagating contact zone is not possible. Rather, if contact of the detached 

segment of the patch with the base structure is present it is either in the form of a full contact zone—that 
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is, the entire debonded segment of the patch maintains sliding contact with the base structure—or edge 

point contact, where only the “free” edge  of the patch maintains sliding contact [Karlsson and Bottega 

1999b]. If, for this class, neither of these configurations is possible then contact does not occur: a contact 

zone does not exist.)

   For the case of no contact zone, a relatively simple growth path can be determined in the load-bond  

zone boundary space and the deflection-bond zone boundary space, or equivalently in the load-

deflection space. Various scenarios can be predicted from examination of these paths as follows. 

Consider the generic growth path shown in Figure 3, where represents the generalized “load”, say the 

temperature change or the applied transverse pressure, and a corresponds to the size of the damaged 

region. For a given initial damage size (say point A, C, or F on the horizontal axis), no growth occurs as 

the load is increased until the load level is such that the growth path is intercepted. At that point growth 

ensues and may proceed according to several scenarios, depending upon the initial value of a . These 

scenarios include stable growth (BEH), where an increment in load produces an increment in damage 

size; unstable growth .D !E/ followed by stable growth (EH), where the damage propagates dynamically 

(that is, “jumps”) to an alternate stable configuration and then proceeds in a stable manner thereafter; and 

unstable, catastrophic growth .G ! H0/, where the damage propagates dynamically through the entire 

length of the patch, resulting in complete detachment of the patch from the base structure.

The formulation discussed in Section 2 and the procedure outlined in the current section are applied  to 

examples of axially (circumferentially) unfettered structures in the next section.

 5. Results for axially unfettered structures

 In this section, we present results for structures that are completely unfettered and for those whose edges

 are free to translate in the axial (circumferential) direction. Specifically, in Section 5.1 we consider  

completely unfettered structures, flat or curved, subjected to temperature change alone. In Section 5.2 
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we consider the influence of temperature on edge debonding of both flat and curved structures subjected  

to three-point loading, and in Section 5.3 we examine the effects of temperature on the detachment of 

axially unfettered patched beam-plates subjected to transverse pressure.

 5.1. Unfettered structures in a uniform temperature field. In this section, we examine the behavior of  

structures, flat or curved, that are completely unfettered (that is, those whose edges are free). The results 

discussed also hold for the case of pinned-free supports. That is, for structures for which the edges of the 

base panel are free to translate with regard to axial (circumferential) translation and pinned with regard 

to rotation.

        For this case, a free-body diagram of segments of the structure in each of the regions shows that

It follows from earlier discussions that for the present case passive contact occurs . 2 D 0/ for the  entire 

detached segment of the patch, regardless of the sign of the thermally-induced curvature in the bond 

zone. In this case, the transversality conditions given by (42) reduce to the same form,

Since the bond zone boundary does not appear explicitly in the equation (51) for the growth path, the  

energy release rate is independent of the location of the bond zone boundary. It follows that when growth 

occurs it is catastrophic. That is, when the critical temperature change is achieved, the entire patch 

detaches from the base structure in an unstable manner. Substitution of (44)2, (13), and (14) into (51) 

renders the transversality condition for this case to the form

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 14

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 15

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 16

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 17

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 18

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 19

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 20

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 21

ISSN Application No. 21818



Journal of Mechanics and Structure (Volume - 13, Issue - 2, May - August 2025)                                                           Page No. 22

6. Concluding remarks

 The problem of debonding of patched panels subjected to temperature change and transverse pressure  

has been formulated from first principles as a propagating boundaries problem in the calculus of 

variations. This is done for both cylindrical and flat structures simultaneously. An appropriate 

geometrically nonlinear thin structure theory is incorporated for each of the primitive structures (base 

panel and patch) individually. The variational principle then yields the constitutive equations of the 

composite structure within the patched region and an adjacent contact zone, the corresponding equations 

of motion within each region of the structure, and the associated matching and boundary conditions for 

the structure. In addition, the transversality conditions associated with the propagating boundaries of the 

contact zone and bond zone are obtained directly, the latter giving rise to the energy release rates in self-

consistent functional form for configurations in which a contact zone is present, as well as when it is 

absent. Further, a structural scale decomposition of the energy release rates is established by advancing 

earlier work of the f irst author to include the effects of temperature. The formulation is utilized to 

examine the behavior of several representative structures and loadings. These include debonding of 

completely unfettered patched structures subjected to temperature change, the effects of temperature on 

the detachment of beam-plates and arch-shells subjected to three-point loading, and the effects of 
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temperature on damage propagation in beam-plates, with both hinged-free and clamped-free support 

conditions, subjected to transverse pressure. For the unfettered structures subjected to thermal load, the 

dependence of the critical thermal moment is  found as a function of the ratio of elastic moduli, E0, for 

the patch and base structure. The critical moment  is found to increase rapidly as the modulus ratio is 

increased, to a peak value for a modulus ratio about E0D0:25, and then to decrease as the modulus ratio 

increases beyond this value. Damage propagation for both plate and shell structures subjected to three-

point loading is seen to occur in a catastrophic manner once the critical load level is achieved. The 

critical load level is seen to be significantly influenced by  the temperature field, especially for the shell 

structures. Similar qualitative behavior was seen for forcecontrolled loading of patched beam-plates 

subjected to transverse pressure and uniform temperature for the case of hinged-free support conditions. 

However, for displacement-controlled loading, debond propagation was seen to be stable, unstable 

followed by stable, or catastrophic, depending on the initial damage size and the temperature. For the 

case of clamped-free supports, a contact zone is present for very long patches for a limited range of 

damage sizes. For these situations, growth was seen to be stable, with minor propagation of the damaged 

region, and to lead to asymptotic arrest. For shorter patches, and for long patches with moderate to large 

initial damage, no contact zone was present. For these situations, propagation was seen to be 

catastrophic for moderately small initial damage or moderately large patch size, unstable followed by 

stable for still larger initial damage and stable for very large initial damage or small patch lengths. The 

threshold levels of the applied pressure and the stability of debond growth were seen to be strongly 

influenced by temperature for force-controlled loading. This behavior and its dependence on 

temperature was accentuated for displacement-controlled loading.

    To close, we remark that the membrane force vanishes identically for the axially unfettered structures  

discussed in Section 5, thus nullifying the contributions of the geometric nonlinearities for these support 

configurations. It was shown in [Carabetta and Bottega 2008], however, that retention of geometric 

nonlinearities is essential to adequately model debonding phenomena in thin structures for 

configurations in which the membrane force does not vanish identically. This is so regardless of whether 

or not buckling is an issue. In this light, the formulation and analytical procedure developed in the 

present work (Sections 2–4) is a geometrically nonlinear one, designed to study debonding behavior in 

structures possessing such configurations. This includes the study of the interaction of thermally-

induced buckling and debond propagation as well. Extensive work in this area is currently in progress 

and will be presented in a forthcoming article by the authors.

 Dedication

 It is with great pleasure and honor that we contribute this paper to this special issue of JoMMS dedicated  

to Professor George J. Simitses, a true gentleman and scholar.
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  EXPONENTIAL SOLUTIONS FOR A LONGITUDINALLY 
VIBRATING INHOMOGENEOUS ROD

 IVO CALIÒ AND ISAAC ELISHAKOFF

  1. Introduction

 Recently, several closed-form solutions have been derived by the semi-inverse method [Elishakoff 

2005]  for the problem of eigenvalues of inhomogeneous structures. In particular Candan and Elishakoff 

[2001] solved the problem of construction of a bar with a specified mass density and a preselected 

polynomial mode shape, while Ram and Elishakoff [2004] solved the analogous problem in the discrete 

setting. It turns out that a bar with a tip mass [Elishakoff and Perez 2005] or with a translational spring 

[Elishakoff and Yost 2009] can also possess a polynomial mode shape. 

   In a personal communication to the second author (2007), Dr. A. R. Khvoles posed the question of 

whether or not an inhomogeneous rod may possess an exponential mode shape. This question is 

elucidated in the present study. The solution can serve as a benchmark for the validation of various 

approximate analyses and numerical techniques.

    Formulation of problem. Let us consider an inhomogeneous rod of length L, cross-sectional area A.x/,

 varying modulus of elasticity E.x/, and varying material density .x/. The governing differential equa 

tion of the dynamic behavior of such an inhomogeneous rod is given by

  A special class of closed form solutions for inhomogeneous rods is investigated, arising from the follow 

ing problem: for a given distribution of the material density, find the axial rigidity of an inhomogeneous 

rod so that the exponential mode shape serves as the vibration mode. Specifically, for a rod clamped at  one 

end and free at the other, the exponentially varying vibration mode is postulated and the associated semi-

inverse problem is solved. This yields distributions of axial rigidity which, together with a specific law of 

material density, satisfy the governing eigenvalue problem. The results obtained can be used in the context 

of functionally graded materials for vibration tailoring, that is, for the design of a rod with a given natural 

frequency according to a postulated vibration mode.
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 where N.0 / is the amplitude of the axial loading at the cross-section 0.For the clamped-free bar the

 boundary conditions (6) become
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3. Conclusion
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 INFLUENCE OF CORE PROPERTIES ON THE FAILURE
 OF COMPOSITE SANDWICH BEAMS

 ISAAC M. DANIEL

 1. Introduction

 The overall performance of sandwich structures depends in general on the properties of the facesheets, 

the  core, the adhesive bonding the core to the skins, and geometric dimensions. Sandwich beams under 

general bending, shear and in-plane loading display various failure modes. Their initiation, propagation, 

and interaction depend on the constituent material properties, geometry, and type of loading. Failure 

modes and their initiation can be predicted by conducting a thorough stress analysis and applying 

appropriate  failure criteria in the critical regions of the beam. This analysis is difficult because of the 

nonlinear and inelastic behavior of the constituent materials and the complex interactions of failure 

modes. Possible failure modes include tensile or compressive failure of the facesheets, debonding at the 

core/facesheet interface, indentation failure under localized loading, core failure, wrinkling of the 

compression facesheet, and global buckling. Following initiation of a particular failure mode, this mode 

may trigger and interact with other modes and final failure may follow a different failure path. A general 

review of failure modes in composite sandwich beams was given in [Daniel et al. 2002]. Individual 

failure modes in sandwich  columns and beams are discussed in [Abot et al. 2002; Gdoutos et al. 2002b; 

2003]. Of all the factors influencing failure initiation and mode, the properties of the core material are 

the most predominant. 

    Commonly used materials for facesheets are composite laminates and metals, while cores are made of 

metallic and nonmetallic honeycombs, cellular foams, balsa wood, or truss.

   The facesheets carry almost all of the bending and in-plane loads while the core helps to stabilize the 

 The initiation of failure in composite sandwich beams is heavily dependent on properties of the core  

material. Several core materials, including PVC foams and balsa wood were characterized. The various 

failure modes occurring in composite sandwich beams are described and their relationship to the relevant 

core properties is explained and discussed. Under flexural loading of sandwich beams, plastic yielding or 

cracking of the core occurs when the critical yield stress or strength (usually shear) of the core is reached. 

Indentation under localized loading depends principally on the square root of the core yield stress. The 

critical stress for facesheet wrinkling is related to the core Young’s and shear moduli in the thickness 

direction. Experimental mechanics methods were used to illustrate the failure modes and verify analytical 

predictions.
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facesheets and defines the flexural stiffness and out-of-plane shear and compressive behavior. A  number 

of core materials, including aluminum honeycomb, various types of closed-cell PVC foams,

 a polyurethane foam, foam-filled honeycomb and balsa wood, were characterized under uniaxial and

 biaxial states of stress.  In the present work, failure modes were investigated experimentally in axially 

loaded composite sandwich columns and sandwich beams under bending. Failure modes observed and 

studied include indentation failure, core failures, and facesheet wrinkling. The transition from one 

failure mode to another for varying loading or state of stress and beam dimensions was discussed. 

Experimental results were compared with analytical predictions.

 2. Characterization of core materials

 The core materials characterized were four types of a closed-cell PVC foam (Divinycell H80, H100, 

H160 and H250, with densities of 80, 100, 160 and 250kg/m3, respectively), an aluminum honeycomb 

(PAMG 8.1-3/16 001-P-5052, Plascore Co.), a polyurethane foam, a foam-filled honeycomb, and balsa 

wood. Of these, the low density foam cores are quasi-isotropic, while the high density foam cores, the 

honeycombs, and balsa wood are orthotropic with the 1-2 plane parallel to the facesheets being a plane of 

isotropy and the through-thickness direction (3-direction) a principal axis of higher stiffness, as shown 

in x Figure 1. All core materials were characterized in uniaxial tension, compression, and shear along the 

inplane and through-thickness directions. Typical stress-strain curves are shown in Figures 2 and 3. 

Some
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 of their characteristic properties are tabulated in Table 1. The core materials (honeycomb or foam) were  

provided in the form of 25.4mm thick plates. The honeycomb core was bonded to the top and bottom 

facesheets with FM73 M film adhesive and the assembly was cured under pressure in an oven following 

the recommended curing cycle for the adhesive. The foam cores were bonded to the facesheets using a 

commercially available epoxy adhesive (Hysol EA 9430) [Daniel and Abot 2000]. Beam specimens 

25.4mm wide and of various lengths were cut from the sandwich plates. 

   Two core materials, Divinycell H100 and H250 were fully characterized under multiaxial stress con 

ditions [Gdoutos et al. 2002a]. A series of biaxial tests were conducted including constrained strip 

specimens in tension and compression with the strip axis along the through-thickness and in-plane 

directions; constrained thin-wall ring specimens in compression and torsion; thin-wall tube specimens 

in tension and torsion; and thin-wall tube specimens under axial tension, torsion and internal pressure. 

From these tests and uniaxial results in tension, compression, and shear, failure envelopes were 

constructed. It
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 core is constant. This pattern remains uniform up to an applied load of 3.3kN which corresponds to an  

average shear stress in the core of 2.55MPa. This is close to the proportional limit of the shear 

stressstrain curve of the core material (Figure 3). For higher loads, the core begins to yield and the shear 

strain becomes highly nonuniform peaking at the center and causing plastic flow. The onset of core 

failure in beams is directly related to the core yield stress in the thickness direction. A critical condition 

for the core occurs at points where shear stress is combined with compressive stress.

 The deformation and failure of the core is obviously dependent on its properties and especially its  

anisotropy. Honeycomb and balsa wood cores are highly anisotropic with much higher stiffness and 

strength in the thickness direction, a desirable property. Figure 8 shows isochromatic fringe patterns in 

the photoelastic coating and the corresponding load deflection curve for a composite sandwich beam 

under three-point bending. The beam consists of glass/vinylester facesheets and balsa wood core. The 

fringe patterns indicate that the shear deformation in the core is initially nearly uniform, but it becomes 

nonuniform and concentrated in a region between the support and the load at a distance of approximately 

one beam depth from the support. The pattern at the highest load shown is indicative of a vertical crack 

along the cells of the balsa wood core. The loads corresponding to the fringe patterns are marked on the 

load deflection curve. It is seen that the onset of nonlinear behavior corresponds to the beginning of 

fringe concentration and failure initiation in the critical region of the core. Figure 9 shows the damaged 

region of the beam. Although the fringe patterns did not show that, it appears that a crack was initiated 

near the upper facesheet/core interface and propagated parallel to it.
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 The crack traveled for some distance and then turned downwards along the cell walls of the core until it  

approached the lower interface. It then traveled parallel to the interface towards the support point.
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    Core failure is accelerated when compressive and shear stresses are combined. This critical 

combination is evident from the failure envelope of Figure 4. The criticality of the compression/shear 

stress biaxiality was tested with a cantilever sandwich beam loaded at the free end. The isochromatic 

fringe patterns of the birefringent coating in Figure 10 show how the peak birefringence moves towards 

the fixed end of the beam at the bottom where the compressive strain is the highest and superimposed on 

the shear strain. Plastic deformation of the core, whether due to shear alone or a combination of 

compression and shear, degrades the supporting role of the core and precipitates other more catastrophic 

failure modes, such as facesheet wrinkling.

4. Indentation failure

 Indentation failure in composite sandwich beams occurs under concentrated loads, especially in the 

case  of soft cores. Under such conditions, significant local deformation takes place of the loaded 

facesheet into the core, causing high local stress concentrations. The indentation response of sandwich 

panels was first modeled by [Meyer-Piening 1989] who assumed linear elastic bending of the loaded 

facesheet resting on a Winkler foundation (core). Soden [1996] modeled the core as a rigid-perfectly 

plastic foundation, leading to a simple expression for the indentation failure load. Shuaeib and Soden 

[1997] predicted indentation failure loads for sandwich beams with glass-fiber-reinforced plastic 

facesheets and thermoplastic foam cores. The problem was modeled as an elastic beam, representing the 
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facesheet, resting on an elastic-plastic foundation representing the core. Thomsen and Frostig [1997] 

studied the  local bending effects in sandwich beams experimentally and analytically. The indentation 

failure of composite sandwich beams was also studied by [Anderson and Madenci 2000; Petras and 

Sutcliffe 2000; Gdoutos et al. 2002b].
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 5. Facesheet wrinkling failure

 Wrinkling of sandwich beams subjected to compression or bending is defined as a localized short-wave

 length buckling of the compression facesheet. Wrinkling may be viewed as buckling of the compression

 facesheet supported on an elastic or elastoplastic continuum [Gdoutos et al. 2003]. It is a common 

failure  mode leading to loss of the beam stiffness. The wrinkling phenomenon is characterized by the 

interaction
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 6. Conclusions
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 The initiation of failure in composite sandwich beams is heavily dependent on properties of the core  

material. Plastic yielding or cracking of the core occurs when the critical yield stress or strength (usually 

shear) of the core is reached. Indentation under localized loading depends principally on the square root 

of the core yield stress. Available theory predicts indentation failure approximately, overestimating it for 

soft cores and underestimating it for stiffer ones. The critical facesheet wrinkling stress is predicted 

fairly closely by Heath’s formula for cases not involving shear interaction between the facesheets and 

the core, such as compressively loaded columns and beams under pure bending. In the case of cantilever 

beams or beams under three-point bending, entailing shear interaction between the facesheets and core, 

the Hoff and Mautner formula predicts a value for the critical wrinkling stress which is proportional to 

the cubic root of the product of the core Young’s and shear moduli in the thickness direction. The ideal 

core should be highly anisotropic with high stiffness and strength in the thickness direction.
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DIRECT DAMAGE-CONTROLLED DESIGN OF PLANE  
STEEL MOMENT-RESISTING FRAMES USING STATIC 

INELASTIC ANALYSIS

 GEORGE S. KAMARIS, GEORGE D. HATZIGEORGIOU AND DIMITRI E. 
BESKOS

 1. Introduction

 Current steel design codes, such as AISC [1998] and EC3 [2005], are based on ultimate strength and  the 

associated failure load. In both codes, member design loads are usually determined by global elastic 

analysis and inelasticity is taken into account indirectly through the interaction equations involving 

design loads and resistances defined for every kind of member deformation. Instability effects are also 

taken in an indirect and approximate manner through the use of the effective length buckling factor, 

while displacements are checked for serviceability at the end of the design process. Seismic design loads 

are obtained with the aid of seismic codes, such as AISC [2005] and EC8 [2004]. In this case the global 

analysis can be elastostastic as before, spectral dynamic, static inelastic (push-over) or nonlinear 

dynamic. 

   Damage of materials, members, and structures is defined as their mechanical degradation under 

loading. Control of damage is always desirable by design engineers. Even though current methods of 

design [AISC 1998; EC3 2005; AISC 2005; EC8 2004] are associated with ultimate strength and 

consider inelastic material behavior indirectly or directly, they are force-based and cannot achieve an 

effective control of damage, which is much better related to displacements than forces. For example, the 

  A new direct damage-controlled design method for plane steel frames under static loading is presented.  

Seismic loading can be handled statically in the framework of a push-over analysis. This method, in 

contrast to existing steel design methods, is capable of directly controlling damage, both local and global, 

by incorporating continuum damage mechanics for ductile materials in the analysis. The design process is 

accomplished with the aid of a two-dimensional finite element program, which takes into account 

material and geometric nonlinearities by using a nonlinear stress-strain relation through the beam-column 

f iber modeling and including P-and P-effects, respectively. Simple expressions relating damage to the 

plastic hinge rotation of member sections and the interstorey drift ratio for three performance limit states 

are derived by conducting extensive parametric studies involving plane steel moment-resisting frames 

under static loading. Thus, a quantitative damage scale for design purposes is established. Using the 

proposed design method one can either determine damage for a given structure and loading, or dimension 

a structure for a target damage and given loading, or determine the maximum loading for a given structure 

and a target damage level. Several numerical examples serve to illustrate the proposed design method and 

demonstrate its advantages in practical applications. 
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percentage of the interstorey drift ratio (IDR) of seismically excited buildings is considered a solid basic

 indicator of the level of damage, as suggested by the HAZUS99-SR2 User’s Manual [FEMA 2001]. 

Even  the displacement-based seismic design method [Priestley et al. 2007], in which displacements 

play the fundamental role in design and are held at a permissible level (target displacements), does not 

lead into a direct and transparent control of damage.

    To be sure, there are many works in the literature dealing with the determination of damage in 

members  and structures, especially in connection with the seismic design of reinforced concrete 

structures. More specifically, damage determination of framed buildings at the local and global level can 

be done with the aid of damage indices computed on the basis of deformation and/or energy dissipation, 

as shown by Park and Ang [1985] and Powell and Allahabadi [1988], for example. On the other hand, the 

finite element method has been employed in the analysis of steel and reinforced concrete structures in 

conjunction with a concentrated inelasticity (plasticity and damage) beam element in [Florez-Lopez 

1998].  Damage determination in reinforced concrete and masonry structures has also been done by 

employing continuum theories of distributed damage in the framework of the finite element method 

[Cervera et al. 1995; Hatzigeorgiou et al. 2001; Hanganu et al. 2002]. Note that in all these references, 

the approach is to determine damage as additional structural design information, and cannot lead to a 

structural design with controlled damage.

    Here we extend the direct damage-controlled design (DDCD) method, first proposed in Hatzigeorgiou

 and Beskos [2007] for concrete structures, to structural steel design. The basic advantage of DDCD is 

the  dimensioning of structures with damage directly controlled at both local and global levels. In other 

words, the designer can select a priori the desired level of damage in a structural member or a whole 

structure and direct his design in order to achieve this preselected level of damage. Thus, while the 

DDCD deals directly with damage, inelastic design approaches, such as [AISC 1998; EC3 2005; AISC 

2005; Ec8 2004; Priestley et al. 2007] are concerned indirectly with damage. Furthermore, the a priori 

knowledge of damage, as it is the case with DDCD, ensures a controlled safety level, not only in strength 

but also in deflection terms. Thus, the present work, unlike all previous works on damage of steel 

structures, develops for the first time a direct damage-controlled steel design method, which is not just 

restricted to damage determination as an additional structural design information.

    More specifically, the present work develops a design method for plane steel moment-resisting frames

 under static monotonic loading capable of directly controlling damage, both at local and global level.  

Seismic loading can be handled statically in the framework of a push-over analysis. Local damage is def 

ined pointwise and expressed as a function of deformation on the basis of continuum damage mechanics 

theory for ductile materials [Lemaitre 1992]. On the other hand, global damage definition is based on the 

demand-and-capacity-factor design format as well as on various member damage combination rules. 

The method is carried out with the aid of the two-dimensional finite element program DRAIN–2DX 
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[Prakash et al. 1993], which takes into account material and geometric nonlinearities, modified by the 

authors to employ damage as a design criterion in conjunction with appropriate damage levels. Material  

nonlinearities are implemented in the program by combining a nonlinear stress-strain relation for steel 

with the beam-column fibered plastic hinge modeling. Geometric nonlinearities involve P-and Peffects. 

Thus, the proposed method belongs to the category of design methods using advanced methods of 

analysis [Chen and Kim 1997; Kappos and Manafpour 2001; Vasilopoulos and Beskos 2006; 2009], 

which presents significant advantages over the code-based methods. Local buckling can be avoided by 

using only class 1 European steel sections, something which is compatible with the inelastic analysis  

employed herein. Furthermore, all structural members are assumed enough laterally braced in order to  

avoid lateral-torsional buckling phenomena. Using the proposed design method one can either 

determine damage for a given structure and loading, or dimension a structure for a target damage and 

given loading, or determine the maximum loading for a given structure and a target damage level.

2. Stress-strain relations for steel

 Essential features of a steel constitutive model applicable to practical problems should be, on the one 

hand  the accurate simulation of the actual steel behavior and on the other hand the simplicity in 

formulation and efficiency in implementation in a robust and stable nonlinear algorithmic manner. In 

this work, a multilinear stress-strain relation for steel characterized by a good compromise between 

simplicity and accuracy and a compatibility with experimental results, is adopted. The stress-strain . 

relation in tension for this steel model is of the form
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 3. Local damage

 Local damage is usually referred to a point or a part of a structure and is one of the most appropriate 

indicators about their loading capacity. In the framework of continuum damage mechanics, the term 

“local” is associated with damage indices describing the state of the material at particular points of the 

structure, and the term “global” with damage indices describing the state of any finite material volume of 

the structure. Thus, global damage indices can be referred to any individual section, member, 

substructure, or the whole structure. This categorization of damage in agreement with continuum 

mechanics principles stipulating that constitutive models are defined at point level and all other 

quantities are obtained by integrating pointwise information.

    Continuum damage mechanics has been established for materials with brittle or ductile behavior and  

attempts to model macroscopically the progressive mechanical degradation of materials under different 

stages of loading. For structural steel, damage results from the nucleation of cavities due to decohesions 

between inclusions and the matrix followed by their growth and their coalescence through the 

phenomenon of plastic instability. The theory assumes that the material degradation process is governed 

by a damage variable d, the local damage index, which is defined pointwise, following Lemaitre [1992], 

as
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A similar linear damage evolution law was proposed in [Florez-Lopez 1998]. Both laws are supported  

by experiments. One can observe that while the damage evolution law for concrete [Hatzigeorgiou and 

Beskos 2007] was derived by appropriately combining basic concepts of damage mechanics and a 

nonlinear stress-strain equation for plain concrete, the damage evolution law (3) for steel was taken 

directly from the literature [Lemaitre 1992].

 4. Global damage

 Global damage is referred to a section of a member, a member, a substructure, or a whole structure  and 

constitutes one of the most suitable indicators about their loading capacity. Several methods to 

determine an indicator of damage at the global level have been presented in the literature. In general, 

these methods can be divided into four categories involving the following structural demand 

parameters: stiffness degradation, ductility demands, energy dissipation, and strength demands. 

According to the first approach, one of the most popular ways is to relate damage to stiffness degradation 

indirectly, that is, to the variation of the fundamental frequency of the structure during deformation 

[DiPasquale and Cakmak 1990]. However, this approach is inappropriate for the evaluation of the global 

damage of a substructure or its impact on the overall behavior. Furthermore, in order to evaluate the 

complete evolution of global damage with loading, a vast computational effort is needed due to the 

required eigenvalue analysis at every loading step. An alternative way to determine global damage is by 

computing the variation of the structural stiffness during deformation, as in [Ghobarah et al. 1999]; but 

again, evaluation of the global damage evolution requires heavy computations at every loading step. 

Many researchers determine damage in terms of the IDR. Whereas macroscopic quantities such as IDRs 

are good indicators of global damage in regular structures, this is not generally the case in more complex 

and/or irregular structures. Damage determination has also been done with the aid of damage indices 

computed on the basis of ductility (defined in terms of displacements, rotations or curvatures) and/or 

energy dissipation, as is evident in the method of [Park and Ang 1985] for framed concrete buildings or 

in the review article [Powell and Allahabadi 1988]. For the computation of damage in steel structures 
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under seismic loading,  one can mention [Vasilopoulos and Beskos 2006; Benavent-Climent 2007]. 

Note that all these indices are appropriate for seismic analyses only. They are not applicable to other 

types of problems, such as static ones; see [Hanganu et al. 2002].

    In this work, for the section damage index Ds of a steel member, the following expression is proposed

 In the above, the bending moments MA, MS, and MB and the axial forces NA, NS, and NB as well as the  

distances c and d are those shown in the moment M– axial force N interaction diagram of Figure 4 for a 

plane beam-column element. The bending moment MS and axial force NS are design loads 

incorporating the appropriate load factors in agreement with EC3 [2005].

 Figure 4 includes a lower bound damage curve, the limit between elastic and inelastic material behavior 

and an upper bound damage curve, the limit between inelastic behavior and complete failure. Thus, 

damage at the former curve is zero, while at the latter curve is one. Equation (4) is based on the 

assumption that damage evolution varies linearly between the above two damage bounds. These

lower and upper bound curves can be determined accurately with the aid of the beam-column fibered  

plastic hinge modeling described in the next section. For their determination, the resistance safety 

factors are taken into account in agreement with EC3. The bound curves of Figure 4 can also be 

determined approximately by code type of formulae. Thus, the lower bound curve can be expressed as
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 5. Global damage levels
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section damage in a few sections, the overall damage will have a small value because of the small or zero 

values in other sections. For this reason, the overall damage index is not considered as a representative 

one, and the section damage index is used in the applications.
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 6. Direct damage-controlled steel design

 The application of the proposed DDCD method to plane steel members and framed steel structures is  

done with the aid of the DRAIN–2DX [Prakash et al. 1993] computer program, modified properly by the 

authors to perform both analysis and design. This program can statically analyze with the aid of the f inite 

element method plane beam structures taking into account material and geometric nonlinearities. 

Material nonlinearities are accounted for through fiber modeling of plastic hinges in a concentrated 

plasticity theory (element 15 of DRAIN–2DX). Geometric nonlinearities include the P-effect (influence 

of axial force acting through displacements associated with member bending) and the P-effect (influence 

of vertical load acting through lateral structural displacements), which are accounted for by utilizing the 

geometric stiffness matrix.

    The beam-column section is subdivided in a user-defined number of steel fibers (Figure 7). Sensitivity  

studies have been undertaken to define the appropriate number of fibers for various types of sections. For 

example, for an I-section under axial force and uniaxial bending moment one can have satisfactory 

accuracy by dividing that section into 30fibers (layers). Thus, for every structural steel member, selected 

sections are divided into steel fibers and the stress–strain relationship of (1) is used for tension and 

compression.

    In the analysis, every member of the structure needs to be subdivided into several elements (usually  

three or four) along its length to model the inelastic behavior more accurately. The analysis leads to 

highly accurate results, but is, in general, computationally intensive for large and complex structures. 

Figure 8 shows the flow chart of the modified DRAIN–2DX for damage-controlled steel design. Using 

this modified DRAIN–2DX, the user has three design options at his disposal in connection with damage-

controlled steel design:

 (i) determine damage for a given structure under given loading,

 (ii) dimension a structure for given loading and given target damage, or

 (iii) determine the maximum loading a given structure can sustain for a given target damage.
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The first option is the one usually chosen in current practice. The other two options are the ones which  

actually make the proposed design method a direct damage-controlled one.
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 7. Examples of application
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 8. Conclusions

 This paper introduced the direct damage-controlled design (DDCD) method for structural steel design. 

The method

1.works with the aid of the finite element method incorporating material and geometric nonlinearities, a 

continuum mechanics definition of damage and a damage scale derived on the basis of extensive 

parametric studies;

2. allows the designer to either determine the damage level for a given structure and known loading, or 

dimension a structure for a target damage level and known loading, or determine the maximum loading 

for a given structure and a target damage level;

3.can also be used for the case of seismic loading in the framework of the static inelastic (push-over) 

analysis providing a reliable way for achieving seismic capacity design.
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